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Conventions used in this manual
Filenames, commands typed in at the command prompt are written in typewriter font:

pqs aspirin

PQS input keywords are written in BOLD FACE CAPITALS. They must be typed as shown, with the
proviso that they are not case sensitive, and only their first 4 characters are significant (although
more characters can be added to facilitate reading). E.g., the following forms of the FORCE keyword
(a command name) are equivalent: FORC FORCES force or Force.

Text in angle brackets <. . .> requires the substitution of an appropriate text string or value. E.g.
<command> represents any of the valid commands, <basisname> represents a valid basis set name,
<integer> is an integer number, <string> is an arbitrary string etc . . .

Optional input is set in square brackets. E.g. [THREs=<thr1> [,<thr2>]] means that the whole
construct is optional (because of the outer square brackets). Here <thr1> and <thr2> are user-defined
floating-point values.
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Chapter 1
Overview

This documentation describes the general philosophy, the functionality, and the input file format for the
PQS ab initio quantum chemistry suite of programs. The PQS input file, unlike the route information in
some programs, is fairly easy to generate, change and read, and after a little practice it is as easy to work
with (although perhaps less compact) than the input file for any other quantum chemistry program.
PQSMol, the graphical interface to PQS featuring a flexible molecule builder, input generator, parallel job
submission and post-job visualization, is described in a separate manual. There is also a more compact,
Pople-style input, familiar to users of, e.g., the popular Gaussian program package, although this is only
available for the more common job types.

1.1 Program Capabilities

PQS has a wide range of capabilities, and is under continuous development and improvement. Current
capabilities include:

• An efficient vectorized Gaussian integral package allowing high angular momentum basis functions
and general contractions.

• Abelian point group symmetry throughout; utilizes full point group symmetry (up to Ih) for geom-
etry optimization step.

• Closed-shell (RHF) and open-shell (UHF) SCF energies and gradients, including several initial
wavefunction guess options.

• Closed-shell (RHF) and open-shell (UHF) density functional energies and gradients including all
popular exchange-correlation functionals: VWN local correlation, Becke 88 nonlocal exchange,
Handy-Cohen optimized exchange (OPTX), Lee-Yang-Parr nonlocal correlation, B3LYP etc. . .

• Fast and accurate pure DFT energies and gradients for large basis sets using the Fourier Transform
Coulomb (FTC) method.

• Efficient, flexible geometry optimization for all these methods including Eigenvector Following (EF)
algorithm for minimization and saddle-point search, GDIIS algorithm for minimization, use of
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1.1 Program Capabilities

Cartesian, Z-matrix and delocalized internal coordinates. Includes new coordinates for efficient
optimization of molecular clusters and adsorption/reaction on model surfaces.

• Full range of geometrical constraints including fixed distances, planar bends, torsions and out-
of-plane bends between any atoms in the molecule and frozen (fixed) atoms. Atoms involved in
constraints do not need to be formally bonded and - unlike with a Z matrix - desired constraints
do not need to be satisfied in the starting geometry.

• Analytical second derivatives for all these methods, including the calculation of vibrational frequen-
cies, IR intensities and thermodynamic analysis.

• Effective Core Potentials (ECPs), both relativistic and non-relativistic, including energies, gradients
and analytical second derivatives.

• NMR chemical shifts for closed-shell HF and DFT wavefunctions.

• Vibrational Circular Dichroism.

• Canonical, closed-shell MP2 energies and analytical gradients and dual-basis MP2 closed-shell en-
ergies (open-shell under development).

• Numerical closed-shell MP2 second derivatives.

• Potential scan, including scan plus optimization of all other degrees of freedom.

• Reaction Path (IRC) following using either Z-matrix, Cartesian or mass-weighted Cartesian coor-
dinates.

• Population analysis, with bond orders and atomic valencies (free valencies for open-shell systems).
Includes Charges from Electrostatic Potential (CHELP) and (optionally) Weinhold’s Natural Bond
Order (NBO) analysis, including natural population and steric analysis.

• Properties module with charge, spin-density and electric field gradient at the nucleus.

• Polarizabilities and dipole and polarizability derivatives.

• COSMO solvation model, including energies, analytical gradients and numerical second derivatives,
for HF, DFT and canonical MP2 wavefunctions. Also available with NMR (closed-shell HF and
DFT).

• Full Semiempirical package, both open (unrestricted) and closed-shell energies and gradients, in-
cluding MINDO/3, MNDO, AM1 and PM3. For the latter, all main group elements through the
fourth row (except the noble gases) as well as Zinc and Cadmium, have been parameterized.

• Molecular Mechanics using the Sybyl 5.2 and Universal Force Fields.

• QM/MM using the ONIOM method.

• Molecular dynamics using the simple Verlet algorithm.

• Pople-style input for quick input generation and compatibility with other programs.

2 PQS Manual
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1.2 Input Formats: PQS Style and Pople Style

The compact input format introduced by J. A. Pople in the Gaussian 70 program and its successors is
widely used by quantum chemists. To assist users of the PQS suite who are familiar with this input, we
have an alternative Pople-style input reader in PQS. The program recognizes Pople-style input by a hash
mark (#) as the first non-zero character on any input line. The Pople-style input is converted internally
to standard PQS-style input, which is saved in the file <jobname>.pqs.

Note: the Pople-style input is compatible with the input of other programs, notably
the Gaussian series, only in its general features. It is not guaranteed that an input file
designed for any other program will work correctly for PQS, or that a Pople-style PQS
input file will run correctly with any other program system. Because of the difference
in the features of different programs, complete compatibility is impossible to achieve.
Nevertheless, our Pople-style input should appear familiar to many quantum chemists.
Note also that the Pople-style input, because of its simplicity, does not recognize all of
the PQS keywords, only the more routine ones. To access all features of PQS, use the
PQS input, or edit the <jobname>.pqs file generated by the program from an initial
Pople-style input file.

1.3 PQS Input and Output - Two Examples

Native PQS input consists of a series of commands, instructing the program to perform a program step.
A command line begins with a single reserved keyword on a separate input line, and may be followed
by options, separated by spaces. Options have the form of either a single keyword (e.g. BOHR) or
KEYWORD=<value> where value is either a numerical value, a set of 2 or 3 (but not more than 3)
numerical values, or a single character string. Commands are processed sequentially, but loops may be
set up to execute the same group of commands repeatedly via the JUMP command. Only the first four
characters of each keyword are significant, but more can be used to facilitate reading.

Job output is written to standard output and is typically saved on job completion in the output file
<jobname>.out. As well as the full output, there is a summary output (or short output) which is saved
in the file <jobname>.log. The log file contains only output considered to be of direct interest to the
user, such as the final energy, optimized geometry and any computed molecular properties. The log file
can be saved as a reliable summary of a successful job, whilst the larger output file can be deleted.

Before giving an overview of the program modules and a detailed description of the PQS input file and
keywords, we begin with a couple of examples, describing the input file, how to actually submit and run
the job, and showing the log file that each job produces.
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1.3 PQS Input and Output - Two Examples

1.3.1 Example 1

Our first example is a full geometry optimization for water, followed by an NMR chemical shift calculation,
using the B3LYP hybrid density functional and the 6-31G* basis set. The input file for this, water.inp,
is:

TITLE Water geometry optimization + NMR chemical shifts

GEOM=pqs GEOP

O 0 0 0

H 0 0.8 0.6

H 0 -.8 0.6

BASIS=6-31G*

GUESS=HUCKEL

OPTI !----------

SCF DFT=B3LYP ! | basic optimization loop

FORCE ! |

JUMP !----------

NMR

Anatomy of the Input File

This input uses nine command keywords: TITLe, GEOM, BASIs, GUESs, OPTImize, SCF,
FORCe, JUMP and NMR.

The TITLe command is trivial and simply gives a job title or heading. The title string given will be
echoed in the output and log files. (In fact the entire input file will be echoed.)

The GEOM command controls input of the molecular geometry. GEOM=pqs means that we use the
PQS native style to define the initial molecular geometry. PQS has a flexible geometry reader, and can
read a number of different input formats, e.g., Z-matrix or Protein Database (pdb) styles, and geometries
from several graphical modeling programs. The GEOP (Geometry Parameters) option requests the
printing of chemically relevant bond distances, angles and torsions. The GEOM command is followed
by the molecular geometry in PQS format (in the simplest case - as here - the atomic symbol and X, Y,
Z Cartesian coordinates, default in Å, free format)

The BASIs command specifies the Gaussian basis set, in this case the 6-31G* basis of Pople and cowork-
ers. PQS has a flexible basis set input, and can read basis sets from the input file or from an external file,
and can augment the specified basis with additional basis functions. The BASIs command is required
in all ab initio calculations.

The GUESs command specifies the initial wavefunction guess for the molecule, in this case an extended
Hückel wavefunction. In most cases the GUESs command is optional; if it is left out, a well-defined
sequence of default guesses is tried automatically by the program.
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The OPTI command specifies a geometry optimization. This is a so-called loop command, which involves
repeated execution of a sequence of commands until some condition is reached which exits the loop. The
JUMP command denotes the end of the command sequence. Thus in this example the commands
OPTI, SCF and FORCE will be executed repeatedly until some appropriate exit condition is satisfied
(hopefully convergence to the optimized geometry). The PQS optimization module has a rich set of
options, but in standard cases no additional options are required.

The SCF and FORCe commands, respectively, specify a self-consistent field calculation, followed by
the evaluation of the nuclear gradient, i.e., the forces on the atoms. The gradients are required for the
geometry optimization. The SCF command has an option, DFT=B3LYP which specifies that the
hybrid B3LYP exchange-correlation functional is to be used.

Finally, the command NMR initiates the calculation of NMR chemical shifts.

The log file (the short output file) produced by running water.inp is:

========================================================================

PQS Ab Initio Program Package running on dirac

Date : Tue Oct 24 9:43:37 2006

Executable : /home/pqs1/PQSv33/INTEL64/pqs.x

Type : ELF 64-bit LSB executable, AMD x86-64, version 1 (SYSV),

for GNU/Linux 2.4.1, statically linked, stripped

Intsize : 1

========================================================================

TITLE Water geometry optimization + NMR chemical shifts

GEOM=PQS GEOP

O 0 0 0

H 0 0.8 0.6

H 0 -.8 0.6

BASIS=6-31G*

GUESS=HUCKEL

OPTI

SCF DFT=B3LYP

FORCE

JUMP

NMR

Empirical Formula: H2O

Cartesian Coordinates in Standard Orientation

Coordinates (Angstroms)

ATOM X Y Z

1 o 0.000000 0.000000 -0.400000

2 h 0.000000 0.800000 0.200000

3 h 0.000000 -0.800000 0.200000
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Point Group: C2v Number of degrees of freedom: 2

Charge: 0.000000 Multiplicity: 1

Wavefunction: RDFT XC potential: b3lyp

Basis set: 6-31g-d

Number of contracted basis functions: 19

** Cycle 1 Energy -76.406968491 RMSG 0.02925 RMSD 0.07618 **

** Cycle 2 Energy -76.408906347 RMSG 0.00300 RMSD 0.01613 **

** Cycle 3 Energy -76.408955138 RMSG 0.00018 RMSD 0.00064 **

** Cycle 4 Energy -76.408955243 RMSG 0.00002 RMSD 0.00004 **

CONVERGED GEOMETRY

Coordinates (Angstroms)

X Y Z

o 0.00000000000000 0.00000000000000 -0.39913730451687

h 0.00000000000000 0.76155207034049 0.19956865225844

h 0.00000000000000 -0.76155207034049 0.19956865225844

dipole/D = 0.000000 0.000000 2.095284 total= 2.095284

------------------------------------------------------------------------

NMR SHIELDINGS

------------------------------------------------------------------------

O Atom= 1 Isotropic shielding= 316.58563 Anisotropy= 39.87370

H Atom= 2 Isotropic shielding= 31.95379 Anisotropy= 17.39368

H Atom= 3 Isotropic shielding= 31.95379 Anisotropy= 17.39368

------------------------------------------------------------------------

Charge: 0.000000 Multiplicity: 1

Wavefunction: RDFT XC potential: b3lyp

Basis set: 6-31g-d

Number of contracted basis functions: 19

Energy is: -76.408955243 au

dipole/D = 0.000000 0.000000 2.095284 total= 2.095284

========================================================================

Total master CPU time = 0.05 Elapsed = 0.05 min

Termination on Tue Oct 24 9:43:41 2006
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========================================================================

The log file starts with a header indicating which machine you are running on (here dirac), the date and
time the job was started, the location and type of the PQS executable, and the integer size (the number
of integers in a double word, 8 bytes). The entire input file is then echoed.

Then follows output from the GEOM command: the empirical formula, Cartesian coordinates (possibly
reoriented), the point group symmetry and the number of degrees of freedom. This is followed by the
charge and multiplicity, the theoretical method (here restricted (closed-shell) DFT with the B3LYP
functional) and the basis set.

There is then a summary of each optimization cycle, showing the cycle number, the energy, and the
root-mean-square gradient and displacement, respectively. This particular optimization converged in
four cycles. The final converged geometry is printed, together with the final dipole moment.

The chemical shifts for each atom (from the NMR module) are then given, together with a final summary
giving the optimized energy.

This format is fairly typical of the log file. The precise content depends, of course, on the actual job.

1.3.2 Example 2

Our second example is a Pople-style input file: a DFT geometry optimization on triplet dioxygen with a
good quality basis set (o2.com). (It has the input extension .com to distinguish it from PQS style input
which has the default extension .inp)

%MEM=3

# BPW91/6-311G(2df,2pd) OPT

Bond distance in triplet O2 by BPW91 and a good basis

0 3

O

O 1 R

R=1.2

The Pople input style is recognized by the hash mark as the first character of the main command line. The
very first line in the input sets the maximum amount of memory that can be utilized by the job (in this
example 3,000,000 MWords, i.e., 24 MB this is a reduction from the default, which is 5,000,000 MWords;
it is included here only to demonstrate this feature, as this small job does not need even this much
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memory). The second line is the main command line (also called the route card). It defines the quantum
chemical method used (DFT using the BPW91 functional), the basis set, and the type of calculation (a
geometry optimization). An empty line concludes this section.

Line 4 is the title, again terminated by an empty line. Line 6 defines the molecular charge (0) and
multiplicity (3). Line 7 onwards defines the molecular geometry in Z- matrix format, using the variable R
as the O-O bond length. This section is also terminated by a blank line. Line 10 onwards defines initial
values for the geometry parameters (in this case the initial value for the O-O bond distance, R); again a
blank line is used as a terminator.

The Pople input should be familiar to users of the popular Gaussian series of programs, and we have
adhered to many of the standard input conventions used in Gaussian. Within PQS, the Pople style input
is translated internally to PQS style, and a new file (with the extension .pqs - here o2.pqs) is written
and used to run the job.

Note: The Pople input style has been provided primarily as an aid to potential users
who are familiar with Gaussian and similar packages that use this input style. We do not
recommend its general use within PQS.

The log file (the short output file) produced by running o2.com is:

========================================================================

PQS Ab Initio Program Package running on dirac

Date : Tue Oct 24 10: 0:16 2006

Executable : /home/pqs1/PQSv33/INTEL64/pqs.x

Type : ELF 64-bit LSB executable, AMD x86-64, version 1 (SYSV),

for GNU/Linux 2.4.1, statically linked, not stripped

Intsize : 1

========================================================================

\%MEM=3

\# BPW91/6-311G(2df,2pd) OPT

Bond distance in triplet O2 by BPW91 and a good basis

0 3

O

O 1 R

R=1.2

Empirical Formula: O2

Cartesian Coordinates in Standard Orientation
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Coordinates (Angstroms)

ATOM X Y Z

1 o 0.000000 0.000000 -0.600000

2 o 0.000000 0.000000 0.600000

Point Group: D*h Number of degrees of freedom: 1

SCF Energy: -149.467868275 iterations: 6 basis: 3-21g

Charge: 0.000000 Multiplicity: 3

Wavefunction: UDFT XC potential: bpw91

Basis set: 6-311g-2df2pd

Number of contracted basis functions: 60

** Cycle 1 Energy -150.369899116 RMSG 0.02997 RMSD 0.02857 **

** Cycle 2 Energy -150.370423795 RMSG 0.00706 RMSD 0.00881 **

** Cycle 3 Energy -150.370457186 RMSG 0.00048 RMSD 0.00064 **

** Cycle 4 Energy -150.370457362 RMSG 0.00001 RMSD 0.00002 **

CONVERGED GEOMETRY

Coordinates (Angstroms)

X Y Z

o 0.00000000000000 0.00000000000000 -0.61005740412078

o 0.00000000000000 0.00000000000000 0.61005740412078

dipole/D = 0.000000 0.000000 0.000000 total= 0.000000

Expectation value of S**2: 2.0038500 Multiplicity: 3.0025650

Empirical Formula: O2

Cartesian Coordinates in Standard Orientation

Coordinates (Angstroms)

ATOM X Y Z

1 o 0.000000 0.000000 -0.610057

2 o 0.000000 0.000000 0.610057

Point Group: D*h Number of degrees of freedom: 1

Charge: 0.000000 Multiplicity: 3
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Wavefunction: UDFT XC potential: bpw91

Basis set: 6-311g-2df2pd

Number of contracted basis functions: 60

Energy is: -150.370457362 au

dipole/D = 0.000000 0.000000 0.000000 total= 0.000000

Expectation value of S**2: 2.0038500 Multiplicity: 3.0025650

========================================================================

Total master CPU time = 0.27 Elapsed = 0.27 min

Termination on Tue Oct 24 10: 0:32 2006

========================================================================

The log file is similar to that produced for the first example, water.inp. The only major difference is
that, as the system is not a closed-shell, the expectation value for 〈S2〉 and the corresponding multiplicity
are printed out for an unrestricted wavefunction.

As can be seen, the spin contamination is very small (〈S2〉 should be exactly 2 for a triplet, compared to
a calculated value of 2.00385).

Note: Before the optimization is started using the requested 6-311G(2df,2pd) basis
set, a preliminary SCF is done for 6 iterations only using the smaller 3-21G basis. This
is a recommended procedure within PQS to provide a better initial wavefunction guess
to start off the larger basis set calculation.

1.4 Running Jobs

A detailed description on how to run jobs, in particular parallel jobs on Linux and Mac systems, is given
in Chapter 6. The following lines serve only as an introduction. To run, say the input file water.inp,
on a Linux or Mac system in the background on a single processor, using a terminal console, cd to the
directory where the input file is located and type

pqs water &

at the prompt. This assumes that PQS has been installed and correctly configured on your system (see
Chapter 2). For input extensions other than the default .inp, type the whole input file name, e.g., pqs
o2.com &

On a Windows system, open a DOS window, or “Command prompt” (Start → Programs → Command
Prompt), change to the directory containing the input file and run the job by typing at the DOS prompt
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pqs water

Note that Linux and Mac are case sensitive while DOS/Windows is not. In both cases, the results will
appear in the file water.out. The summary output is in water.log. These files can be viewed with a
text editor (such as vi or emacs in Linux, Notepad or Wordpad under Windows, or TextEdit on a Mac).
The program also generates a number of internal files (e.g. water.coord or water.basis), both in the
current directory and in the scratch directory. These are sometimes needed to continue a calculation. In
the present case we can get rid of them by typing

tidy water

at the Linux/DOS prompt. On a Mac, this command is named pqs tidy.

For a successful calculation, you should have the directory containing the pqs script (pqs.bat un-
der Windows) in your search path (otherwise, you will have to explicitly specify its location, e.g.,
/usr/local/share/PQS/pqs or "C:\Program Files\PQS\PQS 3.3\pqs", not just pqs as above). PQS
uses three environment variables to get the location (path) of the installation directory, the basis set
library, and the scratch directory. In this order, they are PQS ROOT, PQS BASDIR and PQS SCRDIR.
Generally you should not need to worry about these variables, as they are set at installation time, or by
the execution scripts. They can be changed at run time, and detailed instructions on how to do this will
be provided later.

In order to run PQS jobs, you need to have a valid license installed in your system. Small single processor
jobs (like water.inp above) can be ran freely, but in order to run larger calculations, or to use the parallel
version, a license file is required. To check the status of your license type

pqs -check

this will print out the results of the license checking for all the PQS executables (single processor and
parallel) installed in your system.

Note: The pqs -check command will check for the PQS license proper, and also
for the license for the NBO module. NBO is an optional add-on module to the PQS
program, and its license is sold separately. The NBO license is not needed for the normal
operation of PQS. It is needed only to access the functionality described under the NBO
input keyword (see below).

In order to obtain a license, you have to generate a “lockcode file” by entering the command pqs

-lockcode. This will generate a file pqs lockcode containing the lockcode for your host. Edit pqs lockcode

with a text editor and fill in the contact information in the header, then e-mail the file to licenses@pqs-
chem.com. A license file will be e-mailed back to you. Once you have received the license file, you should
save it in the PQS ROOT directory. The license file must be named pqs lic.
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1.5 Overview of PQS Commands

The program structure is modular, each command module does a specific task, e.g., read input, set up
basis set, construct initial MO guess, solve SCF equations etc. . .

The modules communicate in two ways; through files or via a common storage area in memory (henceforth
known as the “depository”). Some information is stored both on file and in the depository. Simple,
commonly used, single item data are stored both in the memory and on the .control file. Module
specific and matrix (or vector) data are usually stored on a separate file (e.g., the molecular geometry is
stored on the .coord file, the gradient vector on the .grad file etc. . . ).

All data useful for either a restart or for potential use in another run with, e.g., a different basis set,
are kept at the end of the job. These files can be archived into a single file using the script archive.
Temporary, job-specific, files are deleted on job completion. The files generated by the various modules
are described in section 6.4.

A summary of the program commands is given below.

MEMOry (%MEM) Reserves virtual memory for the job (total available and in core/disk usage for
integrals). If present, this must be the very first line of the input. If included later, it has
no effect.

FILE This command changes the scratch directory (if different from the default). It can also take files
(e.g., geometry, molecular orbitals) from another calculation with a different file name.

TITLe Defines a title.

CPU This command is now obsolete and is maintained for backward compatibility only.

GEOM Reads in geometry (in various formats, either as Cartesian coordinates or a Z-matrix), deter-
mines point group symmetry, orients molecule, and calculates geometrical parameters.

BASIs Sets up basis set (including ECPs), either from the basis set library, an optional file, or directly
from the input. It is also possible to augment an existing basis sets with extra basis functions.

GUESs Generates the initial SCF guess. Invoked automatically in most cases and is needed only to
override the default or in special cases, e.g., UHF

INTE Sets up thresholds for integral evaluation. Needed only in special cases.

SCF Solves ab initio SCF equations for closed-shell restricted and open-shell unrestricted wavefunctions.
Does standard Hartree-Fock (HF) plus full range of DFT functionals.

FORCe Calculates the forces on the nuclei (negative gradient or first derivative) for ab initio SCF and
MP2 wavefunctions. Note that the MP2 gradient code is preliminary and is currently serial only.

NUMHess Calculates Hessian matrix by finite-difference on analytical gradients.

12 PQS Manual



Overview

HESS Calculates Hessian matrix analytically. Available for all SCF wavefunctions (closed and open-
shell, HF and all DFT functionals).

NUMPolar Calculates polarizability (and optionally dipole and polarizability derivatives) by finite-
difference on the energy/analytical gradients in an external field.

FREQ Does vibrational and thermodynamic analysis, using the Hessian matrix produced by the HESS
or NUMHESS modules.

NMR Calculates NMR chemical shifts. Also activates VCD rotational strengths.

MP2 Canonical MP2 energy and wavefunction.

POP Mulliken and Löwdin population analysis program. Includes CHELP and Cioslowski atomic
charges.

NBO F. Weinhold’s Natural Bond Orbital analysis (NBO version 5.0).

PROPerty Preliminary properties package. Computes charge and spin-density at the nucleus and the
electric field gradient.

COSMo A. Klamt’s Conductor-like Screening solvation model (COSMO).

SEMI Calculates energy and gradient for semiempirical wavefunctions. Includes MINDO/3, MNDO,
AM1 and PM3.

FFLD Calculates energy and gradient (and optionally the Hessian) for molecular mechanics force fields.
Currently the Sybyl 5.2 and Universal force fields are available.

OPTImize Geometry optimization.

CLEAn Removes files associated with a geometry optimization.

DYNAmics Direct Newtonian molecular dynamics.

QMMM General QM/MM energies and gradients using Morokuma’s ONIOM method.

SCAN Potential scan, including scan + optimization.

PATH Follows a reaction path downhill from a transition state. Path can be defined in Z-Matrix
coordinates, Cartesian coordinates or mass weighted Cartesians.

JUMP Jumps back to the next jump target in the input file for iterative loops (e.g., geometry opti-
mization, reaction path, etc...). It can be used with an optional integer argument, e.g., JUMP 5,
requesting a jump back 5 input cards.

STOP Instructs the program to stop.

TEXT Prints arbitrary text.
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Note: There has been a change in the input for geometry optimizations compared
to earlier versions. The first entry to the OPTIMIZE module now only determines (and
if necessary generates) the coordinates in which the optimization is to be carried out; it
does not calculate an actual step until the second and subsequent entries. Consequently
the preliminary SCF and FORCE calculations that were needed to compute an initial
energy and gradient are no longer required. Additionally, the GUESS card is no longer
necessary (although including it will do no harm) unless specific GUESS options are
desired, e.g., to swap orbital occupancies. Also the JUMP command (which defines
iterative loops) no longer needs a JUMP integer (how many cards to jump back to the
beginning of the loop) which is now automatically determined by the program.
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Chapter 2
Installing PQS

This chapter will describe in detail the installation of the PQS program for Linux, Windows and Mac
systems. If you are using a PQS hardware product like the QuantumCubeTM, then the software is already
installed, and you can safely skip this chapter.

The PQS installation is a very simple procedure that uses system utilities and automated shell scripts in
order to minimize user intervention. Before outlining this procedure, it is useful to discuss the two main
points of the PQS setup: the PQS root directory and the PQS scratch directory.

2.1 The PQS Root Directory

The PQS root directory (PQS ROOT hereafter) is the directory containing the PQS software. This direc-
tory does not require large amounts of disk space (200 MB should be more than enough), and its contents
should be accessible to all the users that want to run PQS jobs. In a multi-user environment PQS ROOT
should thus be part of a system directory. In case PQS is to be used in a computer cluster, PQS ROOT
should be available to all the compute nodes, i.e., it should belong to a disk partition that is shared by
all cluster nodes (the alternative to this would be to do a separate PQS install for each compute node).
The default PQS ROOT (/usr/local/share/PQS on Linux and Mac, "%ProgramFiles%\PQS\PQS 3.3"

on Windows) usually meets the requirements of a typical multi-user and/or cluster setup. The location
of PQS ROOT can be changed at runtime using the environment variable PQS ROOT (on either Linux,
Mac or Windows).

2.2 The PQS Scratch Directory

The PQS scratch directory (PQS SCRDIR hereafter) is the directory where the temporary files needed
during a calculation are written. The amount of storage space used by PQS SCRDIR will depend heavily
on the type of calculation you are planning to run. Small and medium size jobs (up to ≈ 400-500 basis
functions) can be ran with less than 10 GB of scratch space (we recommend at least 2 GB as the very
minimum), but large and very large jobs, specially large MP2 calculations, might require much more,
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say ≈ 100 GB (see page 65). The efficiency of I/O intensive jobs (like MP2) can be increased by placing
PQS SCRDIR on a fast-access storage device (for instance, a striped RAID array). In a multi-user
setup it is desirable to have a separate PQS SCRDIR for each PQS user, to avoid jobs interfering with
each other. In a cluster environment, PQS SCRDIR should be local to each compute node, in order to
maximize the total storage available to the job and the efficiency of the calculation. The default location
on a Linux or Mac system is PQS SCRDIR=/scr/${USER} (e.g.: /scr/bob for user ’bob’) and on Windows
is PQS SCRDIR=%TEMP%. The PQS SCRDIR location can be changed at runtime via the environment
variable PQS SCRDIR.

2.3 Linux Install

PQS for Linux is available both as a single-processor and as a multi-processor executable. The parallel
executable requires additional software to allow communication between the processes. Different versions
are available that use different communication toolkits, namely Parallel Virtual Machine (PVM), and
Message Passing Interface (version 1 and version 2). Here are the detailed software requirements for each
PQS Linux executable:

• Common to all versions:

– Linux operating system

– Bash command shell

– Common utilities such as tar, gzip, grep, sed, etc.

• Parallel PVM version:

– PVM message passing software. The PQS program is linked against PVM version 3.4.5.

• Parallel MPI1 version:

– MPI1 message passing software. The PQS program is linked against MPICH1 version 1.2.7p1.

• Parallel MPI2 version:

– MPI2 message passing software. The PQS program is linked against MPICH2 version 1.0.3.

Note: MPI is the de facto standard for communication among processes for which
many implementations are available, both open source and commercial. Although all
the MPI implementations adhere to the same application programming interface, the
underlying details of each specific MPI flavor differ, and this might create portabil-
ity issues. The PQS MPI executables that are currently available at the PQS web
site are statically linked against the MPICH libraries (MPICH1 or MPICH2, see www-
unix.mcs.anl.gov/mpi/mpich) for communication over Ethernet interfaces, and there is
no guarantee that they will work with a different MPI implementation, or for different
hardware. Special combinations of MPI flavors/hardware might need an ad hoc version
of the program. Contact the PQS customer support (tech@pqs-chem.com) for enquires.
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PQS for Linux is available as a Red-hat package manager (RPM) file or as a compressed (gzip) tar archive.
The rpm package is very easy to use, and will install the software in standard system directories that
should be OK for most system configurations. You will need root access to your system and must have
the rpm utility available in order to install the PQS rpm distribution.

If you cannot meet the previously stated requirements, or you want to install PQS in a custom location (in
particular, if you want to do a single user install, see below) you should download the gzipped tar distri-
bution. The distribution files can be downloaded from the PQS web site at http://www.pqs-chem.com.

2.3.1 Installing from RPM

• Requires: root privileges, rpm utility program

• Defaults: PQS ROOT=/usr/local/share/PQS, PQS SCR=/scr/${USER}

a) Single Processor Version:

a.1 Download the main PQS rpm package for your architecture, say pqs-3.3-1.x86 64.rpm (change
version/architecture identifier as needed).

a.2 As user root, type: rpm -ivh pqs-3.3-1.x86 64.rpm (substitute the appropriate file name
for the rpm package you have downloaded).

a.3 Create a scratch directory for each PQS user:

mkdir -p /scr/<uname>; chown <uname>.users /scr/<uname>

where <uname> = user name. To use a different location for PQS SCRDIR you can set the
environment variable PQS SCRDIR, for instance (using bash syntax):

export PQS_SCRDIR=/myscr/${USER}

you can add a line similar to the above example to a system-wide configuration file, or instruct
the users to modify their $HOME/.bashrc files accordingly.

b) Parallel Version:

b.1 Make sure your system has message passing parallel software such as PVM (recommended),
MPICH1 or MPICH2 installed and properly configured. Refer to the documentation of these
packages for the installation, configuration, and testing of these parallel environments.

b.2 Install the PQS single processor version as explained in a) above.

b.3 Download the parallel rpm for the message passing library you have chosen: pqs pvm-....rpm

for PVM, pqs mpi1-... for MPICH1, and so on.

b.4 As user root, type: rpm -ivh pqs pvm....rpm (substitute the appropriate file name for the
rpm package you have downloaded).
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2.3.2 Installing From Tar Archive

If you choose to install from the tar ball, you have the option of performing a multi-user install or a
single-user install. The multi-user install (default) is suitable if there will be more than one user running
PQS jobs. This is the installation method to use in a cluster environment. Root privileges are required.

In case PQS is to be ran by just one user and on only one compute node, you may choose the single-user
install. This method does not require root privileges, and the default locations are chosen so that the PQS
software is installed under the user home directory. Make sure there is enough free disk space available
to install and run PQS jobs.

c) Multi-user install of Single Processor Version:

• Requires: root privileges, bash command shell, GNU utilities (tar, gzip, sed, etc.)

• Defaults: PQS ROOT=/usr/local/share/PQS, PQS SCR=/scr/${USER}

c.1 Download the main PQS .tar.gz package for your architecture, say pqs-3.3-1.x86 64.tar.gz

(change version/architecture identifier as needed).

c.2 Unpack the file:

tar -xvzf pqs-3.3-1-x86_64.tar.gz

(change version/architecture identifier as needed). This will create a directory named pqs-...

(the name of the tar file without the .tar.gz extension).

c.3 Enter the newly created directory:

cd pqs-...

You should have the following files:

README.PQS

install.sh

pqs-dist....tar.gz

c.4 As user root, type: ./install.sh. You will be prompted for a choice of the installation type:
choose multi-user. The installation procedure will guide you through the process of defining
PQS ROOT and PQS SCRDIR and (optionally) creating separate scratch directories for each
PQS user.

d) Single-user install of Single Processor Version:

• Requires: bash command shell, GNU utilities (tar, sed, etc.)

• Defaults: PQS ROOT=${HOME}/PQS, PQS SCR=${HOME}/pqsscr

d.1 Download the main PQS .tar.gz package for your architecture, say pqs-3.3-1.x86 64.tar.gz

(change version/architecture identifier as needed).

d.2 Unpack the file:

18 PQS Manual



Installing PQS

tar -xvzf pqs-3.3-1-x86_64.tar.gz

(change version/architecture identifier as needed). This will create a directory named pqs-...

(the name of the tar file without the .tar.gz extension).

d.3 Enter the newly created directory:

cd pqs-...

You should have the following files:

README.PQS

install.sh

pqs-dist....tar.gz

d.4 Type: ./install.sh. You will be prompted for a choice of the installation type: choose single-
user. The installation procedure will guide you through the process of defining PQS ROOT
and PQS SCRDIR.

e) Parallel Version:

e.1 Make sure your system has message passing parallel software such as PVM (recommended),
MPICH1 or MPICH2 installed and properly configured. Refer to the documentation of these
packages for the installation, configuration, and testing of these parallel environments.

e.2 Install the PQS single processor version as explained in c) or d) above.

e.3 Download the parallel tar archive for your chosen message passing library: pqs pvm-...tar.gz

for PVM, pqs mpi1-... for MPICH1, and so on.

e.4 Unpack the file:

tar -xvzf pqs_pvm....tar.gz

(change version/architecture identifier as needed). This will create a directory named pqs-...

(the name of the tar file without the .tar.gz extension).

e.5 Enter the newly created directory:

cd pqs_pvm...

You should have the following files:

README.PQS

install.sh

pqs_pvm-dist....tar.gz

e.6 Type: ./install.sh. When prompted, enter the location of PQS ROOT. You might need
root privileges, according to your chosen setup.

2.4 Mac Install

PQS for Mac OS is available both as a single-processor and as a multi-processor executable. The parallel
executable requires additional software to allow communication between the processes. Different versions
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are available that use different communication toolkits, namely Parallel Virtual Machine (PVM), and
Message Passing Interface (version 1 and version 2). Here are the detailed software requirements for each
PQS Mac executable:

• Common to all versions:

– Mac OS X operating system (version 10.4 or later)

– Bash command shell

– Common utilities such as tar, gzip, grep, sed, etc.

• Parallel PVM version:

– PVM message passing software. The PQS program is linked against PVM version 3.4.5.

• Parallel MPI1 version:

– MPI1 message passing software. The PQS program is linked against MPICH1 version 1.2.7p1.

• Parallel MPI2 version:

– MPI2 message passing software. The PQS program is linked against MPICH2 version 1.0.3.

Note: MPI is the de facto standard for communication among processes for which
many implementations are available, both open source and commercial. Although all
the MPI implementations adhere to the same application programming interface, the
underlying details of each specific MPI flavor differ, and this might create portabil-
ity issues. The PQS MPI executables that are currently available at the PQS web
site are statically linked against the MPICH libraries (MPICH1 or MPICH2, see www-
unix.mcs.anl.gov/mpi/mpich) for communication over Ethernet interfaces, and there is
no guarantee that they will work with a different MPI implementation, or for different
hardware. Special combinations of MPI flavors/hardware might need an ad hoc version
of the program. Contact the PQS customer support (tech@pqs-chem.com) for enquires.

PQS for Mac is available as a compressed (gzip) tar archive. You might need administrator access to
your system, depending on the type of installation you choose (see below). The distribution files can be
downloaded from the PQS web site at http://www.pqs-chem.com.

2.4.1 Installing From Tar Archive

When you install from the tar ball, you have the option of performing a multi-user install or a single-user
install. The multi-user install (default) is suitable if there will be more than one user running PQS jobs.
This is the installation method to use in a cluster environment. Administrator privileges are required.
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In case PQS is to be ran by just one user and on only one compute node, you may choose the single-user
install. This method does not require administrator access, and the default locations are chosen so that
the PQS software is installed under the user home directory. Make sure there is enough free disk space
available to install and run PQS jobs.

a) Multi-user install of Single Processor Version:

• Requires: administrator privileges, bash command shell, common Unix utilities (tar, gzip,
sed, etc.)

• Defaults: PQS ROOT=/usr/local/share/PQS, PQS SCR=/scr/${USER}

a.1 Download the main PQS .tar.gz package for your architecture, say pqs-3.3-1.mac-i386.tar.gz

(change version/architecture identifier as needed).

a.2 On a terminal window, cd to the directory where the distribution file was downloaded, then
unpack the file:

tar -xvzf pqs-3.3-1-mac-i386.tar.gz

(change version/architecture identifier as needed). This will create a directory named pqs-...

(the name of the tar file without the .tar.gz extension).

a.3 Enter the newly created directory:

cd pqs-...

You should have the following files:

README.Mac

install.sh

pqs-dist....tar.gz

a.4 Type: sudo ./install.sh. First you will be prompted for the administrator password: Enter
the password at the prompt to execute the installation script. At the beginning of the procedure
you will be prompted for a choice of the installation type: choose multi-user. The installation
procedure will guide you through the process of defining PQS ROOT and PQS SCRDIR.

a.5 Create a scratch directory for each PQS user (the following assumes the default PQS SCRDIR
location):

sudo mkdir -p /scr/<uname>; sudo chown <uname>.<uname> /scr/<uname>

where <uname> = user name. To use a different location for PQS SCRDIR you can set the
environment variable PQS SCRDIR, for instance (using bash syntax):

export PQS_SCRDIR=/myscr/${USER}

you can add a line similar to the above example to a system-wide configuration file, or instruct
the users to modify their $HOME/.profile files accordingly.

b) Single-user install of Single Processor Version:

• Requires: bash command shell, common Unix utilities (tar, sed, etc.)
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• Defaults: PQS ROOT=${HOME}/PQS, PQS SCR=${HOME}/pqsscr

b.1 Download the main PQS .tar.gz package for your architecture, say pqs-3.3-1.mac-i386.tar.gz

(change version/architecture identifier as needed).

b.2 On a terminal window, cd to the directory where the distribution file was downloaded, then
unpack the file:

tar -xvzf pqs-3.3-1-mac-i386.tar.gz

(change version/architecture identifier as needed). This will create a directory named pqs-...

(the name of the tar file without the .tar.gz extension).

b.3 Enter the newly created directory:

cd pqs-...

You should have the following files:

README.Mac

install.sh

pqs-dist....tar.gz

b.4 Type: ./install.sh. You will be prompted for a choice of the installation type: Choose single-
user. The installation procedure will guide you through the process of defining PQS ROOT
and PQS SCRDIR. At the end of the process you are given the possibility of creating symbolic
links to the PQS execution scripts. The default location for the symbolic links is ${HOME}/bin,
e.g. /Users/bob/bin for the user ’bob’.

b.5 To be able to access the PQS software, you have to make sure the PQS execution scripts are
located in a directory included in your search path. To check if the software is accessible, open
a terminal window and type:

which pqs

If you get a negative answer, something like:

no pqs in /bin /sbin /usr/bin /usr/sbin

you need to modify the search path to include the PQS directory or the directory containing
the symbolic links to the execution scripts. Using a text editor, edit your .profile file (this
is an hidden file located in your home directory) and add a line similar to this:

export PATH=${PATH}:${HOME}/bin

this assumes you chose to create the symbolic links in step b.4. Alternatively, you can include
the PQS ROOT directory in the search path:

export PATH=${PATH}:${HOME}/PQS

c) Parallel Version:

c.1 Make sure your system has message passing parallel software such as PVM (recommended),
MPICH1 or MPICH2 installed and properly configured. Refer to the documentation of these
packages for the installation, configuration, and testing of these parallel environments.
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c.2 Install the PQS single processor version as explained in a) or b) above.

c.3 Download the parallel tar archive for your chosen message passing library: pqs pvm-...tar.gz

for PVM, pqs mpi1-... for MPICH1, and so on.

c.4 Unpack the file:

tar -xvzf pqs_pvm....tar.gz

(change version/architecture identifier as needed). This will create a directory named pqs-...

(the name of the tar file without the .tar.gz extension).

c.5 Enter the newly created directory:

cd pqs_pvm...

You should have the following files:

README.Mac

install.sh

pqs_pvm-dist....tar.gz

c.6 Type: ./install.sh (sudo ./install.sh if you are doing a multi-user install). When
prompted, enter the location of PQS ROOT. You might need administrator privileges, ac-
cording to your chosen setup.

2.5 Windows Install

For the Windows platform PQS is packaged together with PQSMol - the Graphical User Interface (GUI)
front end to PQS. The package is distributed in the Microsoft Installer (MSI) format (an equivalent
format to RPM under Linux).

2.5.1 Installing from MSI

• Requires: Administrator privileges, Windows Installer

• Defaults: PQS ROOT="%PROGRAMFILES%\PQS\PQS 3.3" (usually "c:\Program Files\PQS\PQS 3.3"),
PQS SCR="%TEMP%" (usually c:"\temp")

1 Download the PQS.msi package.

2 Using an administrative account open Start->Control Panel->Add or Remove Programs.

3 Select the Add New Programs item in the task bar on the left side of the window.

4 Click on the CD or Floppy button.

5 In the Install Program From Floppy Disk or CD-ROM dialog click on the Next button.
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6 In the Run Installation Program dialog click on the Browse button, select the downloaded PQS.msi

file and press the Finish button to start the Windows Installer.

7 Read the End-User License Agreement and if you agree with its content, check the I accept the

terms in the License Agreement check box and press the Next button.

8 Choose an installation type by clicking on one of the three buttons Typical, Custom or Complete and
press the Install button to finish the installation.

Tip: Steps 2–6 above can be bypassed by opening the folder containing the PQS.msi
file on a Windows explorer, then double-clicking on the PQS.msi file.

2.6 Obtaining a License

After you have installed the software, you need to obtain a license in order to run PQS calculations. You
can run small single-processor jobs without a license, but in order to run larger calculations, or to use
the parallel version or any other PQS software, a license file is required.

2.6.1 Linux and Mac

The first step in obtaining a license is generating the “lockcode” file. To do this type: pqs -lockcode

in a terminal window. This command should produce a file called pqs lockcode containing the lockcode
for your host. If you are in a cluster environment, you need to repeat this procedure for every compute
node on which you want to be able to run PQS jobs. You might want to use a script for this, for instance
(bash syntax):

for node in n1 n2 n3 n4 n5 n6 n7 n8; do

rsh $node pqs -lockcode

done

All the corresponding lockcodes will be appended to the existing pqs lockcode file.

Once you have the pqs lockcode file, edit it with a text editor and fill in the contact information in the
header, then e-mail the file to licenses@pqs-chem.com. A license file will be e-mailed back to you.

Once you have received the license file, you should save it in the PQS ROOT directory. The license file
must be named pqs lic, and its permission should be set to allow reading by each user running PQS
jobs.
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After you have installed the license, you can test it by typing pqs -check.

Note: The pqs -check command will check for the PQS license proper, and also
for the license for the NBO module. NBO is an optional add-on module to the PQS
program, and its license is sold separately. The NBO license is not needed for the normal
operation of PQS. It is needed only to access the functionality described under the NBO
input keyword (see page 70).

2.6.2 Windows

The simplest way to obtain a license is to launch the PQSMol GUI by selecting Start->Program

Files->PQS->PQSMol from the Windows start menu. If no valid PQS license is found on the machine
a license dialog is displayed. The dialog contains a text area with the lockcode text. Fill in the text
area with the requested contact information. At the bottom of the the license dialog click on the Send

button, to launch your default email client. The contact information along with the lockcode, which
uniquely identifies your machine, is passed into the body of the email message. Based on the information
in this email, PQS will generate licenses for both PQS and PQSMol and email them to you. Once you
receive the license strings, execute PQSMol from an administrative account and paste them into the text
entries at the bottom of the license dialog. At this point PQS and PQSMol are fully installed and may
be executed by all users on the system.
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Chapter 3
The PQS Style Input File

3.1 General Conventions

• Keywords in BOLD FACE CAPITALS must be typed as shown, with the proviso that they are
not case sensitive, and only their first 4 characters are significant (although more characters
can be added to facilitate reading). E.g., the following forms of the FORCE keyword (a command
name) are equivalent: FORC FORCES force or Force. To emphasize this point, the first 4
characters of a keyword will be printed in BOLD CAPITAL letters throughout this document,
although this is not necessary in the actual input.

• A line must be shorter than 300 characters.

• All keywords corresponding to program steps must start in the first column on each line with at
least one blank space between all keywords on the same line.

• A question mark or an exclamation mark in column 1 of a line renders the whole line a comment
line; it has no effect on the computation.

• An exclamation mark anywhere on a line makes the rest of the line, beyond the exclamation mark,
a comment (Fortran style). This is convenient to add comments to the input, or to temporarily sup-
press some input options without removing them permanently. Unknown commands are considered
comments and are printed in the output but not processed.

• Text in angle brackets <. . .> requires the substitution of an appropriate text string or value. E.g.
<command> represents any of the valid commands, <basisname> represents a valid basis set
name, <integer> is an integer number, <string> is an arbitrary string etc . . .

• Optional input is set in square brackets. E.g. [THREs=<thr1> [,<thr2>]] means that the
whole construct is optional (because of the outer square brackets). Here <thr1> and <thr2> are
user-defined floating-point values. If this option is present, it can have any of the following forms:

THRE=9.5, or threshold=10, or Threshold=10.4, or THRE=9,7, or THRE=(10.5,7).

This last form shows that if several numerical parameters belong to a single keyword, then they
can be enclosed in parentheses, separated by commas.

26 PQS Manual



The PQS Style Input File

• The general format of a command line is a command name, followed optionally by a set of options;
the command name and the options are all separated by one or more blanks:

<command> [option] [option] [option]. . .

In a few cases (e.g. GEOM, BASIs), the form of the command is:

<command>=<value> [option] [option]. . .

For example:

SCF ITER=15 THRE=4

instructs the program to perform an SCF iteration, with the maximum number of iterations set to
15 (instead of the default 50), and the SCF threshold set to 1.0E-4 (instead of the default which is
1.0E-5).

BASIs=6-31G* NEXT

instructs the program to use the 6-31G* basis, augmented with additional basis functions. The latter
are defined below the BASIS command, and may be extra polarization functions or a different basis
set on specific atoms.

• Options can have the following forms:

<keyword>

<keyword>=<integer> or <integer>, <integer> or <integer>,<integer>, <integer>

<keyword>=<real> or <real>, <real> or <real>,<real>, <real>

<keyword>=<character string>.

They begin with a keyword, the first 4 characters of which are significant. The simplest (logical)
options consist of the keyword only. More complex options set a numerical (integer or real) value
or several (up to 3) numerical values, or a string value. As mentioned above, if 2 or 3 numerical
values are set in an option, they can be enclosed in parentheses.

• Some of the more input-intensive steps, in particular GEOM, BASIs and OPTImize can be
followed by further input information, either in the input itself or in a separate file. E.g., the
nuclear positions for GEOM, the basis set for BASIs, constraints for OPTImize. In general, the
extra information can also be read from a file. This is usually shown by the FILE=<filename>
option. This feature simplifies the input file and is often useful, e.g., when a customized basis set
is shared by several input files, or for large molecules where the geometry data take up too much
space.

• Character strings can be optionally enclosed in quotes (either single ’, or double " quotes). This
can be used to enter file names containing spaces or other special characters (mostly useful on
Windows systems). For instance, the line:

GEOM=CAR FILE="molecule 1.car"

instructs the program to read the input geometry (in CAR format) from the file ’molecule 1.car’.
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3.2 Program Steps

Currently we have the following reserved words for program steps (some quite trivial). Most will be
discussed separately below, except TITLE, TEXT, STOP and JUMP.

CPU Defines computer parameters.

%MEM Requests memory.

TITLe=<title> Defines a title.

FILE Defines archive and scratch files.

TEXT=<arbitrary text> Prints text.

GEOMetry Molecular geometry and symmetry.

NUCLei A synonym of GEOM.

BASIs Basis set.

GUESs SCF guess.

INTEgrals Parameters for integral computation.

SCF SCF iteration.

FORCe Gradient evaluation.

NUMHess Numerical Hessian calculation.

HESS Analytical Hessian calculation.

NUMPolar Numerical polarizabilities and polarizability derivatives.

FREQuency Vibrational frequencies.

NMR NMR chemical shieldings (+ VCD rotational strengths).

MP2 Canonical MP2 energy.

POP Population analysis.

NBO Weinhold’s natural bond order analysis.

PROP Properties computed at the nucleus.

COSMo Klamt’s conductor-like screening solvation model.

SEMI Semiempirical energy and gradient.

FFLD Molecular mechanics energy, gradient and Hessian.
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OPTImize Geometry optimization step.

CLEAn Removes files associated with geometry optimization.

DYNAmics Direct classical molecular dynamics.

QMMM General QM/MM using ONIOM method.

SCAN Potential scan step.

PATH Reaction path step.

JUMP Go back in the program unless a condition is satisfied.

STOP Instructs the program to stop.

3.2.1 MEM Command

Options: %MEM=<integer> [CORE=<integer>] [DISK=<integer>]

Alternative form: MEMOry=<integer>

Controls the amount of memory (in 8-byte double words or in megawords, MW) requested for the job.
The default (if no %MEM card is present) is 5 MW=5,000,000 double words.

If <integer> is small (<2000) it will be assumed to be in megawords (e.g., 7 will be interpreted as
7,000,000 double words); if <integer> is large (>2000), it is interpreted as words.

Note: The %MEM command, if present, must be the very first line of the input.
If included later, it has no effect.

There are two options which control the amount of storage available for the in-core and disk storage of
integrals (for use in semi-direct SCF). Thus %MEM=3 CORE=8 requests 3,000,000 words for the main
program plus an additional 8,000,000 words of core memory exclusively to store integrals.

Unlike physical memory, the units for disk storage are MB not MW. Thus DISK=1000 requests 1000
MB (i.e., 1 GB) of disk space for integral storage. Note that at least 100 MB of disk storage must be
requested with this option, i.e., DISK must be at least 100. If it is less than this, the command will be
ignored.
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Table 3.1: High water memory usage for a series of PQS single-processor runs (upper half) and parallel
runs (bottom half).

System Job Natom Nbasis High water
Annulene B3LYP/6-31G** OPT+NMR 36 360 1794319 SCF

1794319 FORCE
2395432 NMR

Yohimbine BLYP/6-31G* E only 52 442 2508752 SCF
P4O6S4 B3LYP/DZP E+NMR 14 274 1482268 SCF

1747789 NMR
α-pinene B3LYP/6-311G(df,p) E only 26 346 1678157 SCF
Lactic Acid MP2/6-31G* E only 12 102 1860887 MP2
C60 B3LYP/3-21G OPT+FREQ 60 540 3180732 SCF

(numerical) 3180732 FORCE
3203120 FREQ

Taxol BVWN/3-21G E+NMR 113 660 4830156 SCF
4830156 NMR

C24H54Si3 RHF/TZ2P E+NMR 81 915 10994632 SCF
17576048 NMR

C120 BLYP/3-21G E only 120 1080 12908826 SCF

Tip: From a practical point of view, when writing to disk data does not go direct to
the hard drive but into an I/O buffer. Only when the buffer is full is the data physically
written to the disk. PQS does not specify any buffer size when files are opened and
the default under Linux is to keep expanding the buffer until no more physical memory
is available. As the I/O buffer resides in physical memory, storing integrals “on disk”
is essentially equivalent to storing them in “in-core” memory provided the buffer size
is not exceeded. Once this happens, real disk access occurs and, because I/O speed is
very much less than CPU speed, the program slows down significantly. Consequently,
semi-direct SCF calculations that request more disk storage than the available memory
are nearly always slower than the same job ran fully direct.

When requesting memory you should clearly be aware of the configuration of your machine, i.e., how
much RAM memory you have and how much swap space has been configured on your system. The
absolute maximum of memory a program can request is the sum of RAM and swap space, which is the
maximum allowed by the operating system. E.g., with 2 GB of RAM and 2.5 GB swap space, you have
a total of 4.5 GB=562.5 MW. This means that two similar processes, both running on the same node,
can each have 281 MW. Of course, a single program cannot use all the available memory as continuously
running service programs also need some memory. In a parallel run, the slaves as well as the master need
memory. The memory demand for the slaves is currently set at 100% of the memory of the master, and
this cannot be changed by the input. This means that if a computer node runs the master process and
2 slaves, and the memory demand of the master is 10 MW then the total memory demand is 30 MW. In
addition, the slaves also allocate 100% of the in-core integral storage space specified.

If the master node cannot accommodate the full number of slave processes (for instance 1 master and 2
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slaves in a dual processor node) because of restrictions on the total memory available, consider running
one less slave process on the master. This can be done by asking for one fewer processors than the number
available when you submit your job (see Section 6.2).

It is often difficult for the first-time user of PQS to know how much memory is needed for a given job;
this will depend on the size of the system (number of atoms), the basis set and the methodology used.
Table 3.1 gives the high water mark – which is the maximum amount of dynamically allocated memory
(in double words) used – for a number of different jobs and should serve as a guide as to how much
memory to actually request via %MEM.

Note: The high water is different if the job is run in parallel or in single-processor
mode (it is less in parallel). Parallel jobs need memory on each slave as well as on the
master, so even though the high water on the master is less, parallel jobs use more
physical memory.

3.2.2 FILE Command

Options: [CHK=<string>] [SCR=<string>] [SAVE=<string>]

E.g. FILE CHK=<path and file basename> SCR=<scratch directory path> SAVE=<basename>

In most cases this command can be omitted as the defaults are usually appropriate. However, in some
cases, notably for restarting calculations, it may be needed.

Note: The default basename for all files associated with a particular job is that of
the input file.

If the CHK=<oldfile> option is defined, the program copies the files from a previous calculation
(oldfile.control, oldfile.coord, oldfile.mos etc...) to the current jobname (jobname.control,
jobname.coord, jobname.mos). The main use of this is to start a calculation with the coordinates,
molecular orbitals, and other data determined in a previous run, e.g., with a smaller basis. For example,
the command

FILE CHK=C60-3-21G

in the input deck C60-6-311G.inp will cause the files (e.g., C60-3-21G.mos) of the previous small calcu-
lation to be copied to the current jobname (C60-6-311G.mos). This is useful to, e.g., get starting orbitals.
Note that this example assumes that all files are in the current working directory; if this is not the case,
the full file path must be given.

The SCR option redefines the scratch directory (in which all temporary runtime files are stored). If
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it is not given, the scratch directory is taken from the environmental variable PQS SCRDIR. The value
of this variable is system dependent and it is usually set at installation time. On Linux systems, the
default value is /scr/$USER, i.e., /scr/guest for user guest. Before starting the calculation, the program
checks the scratch directory location (either directly specified by the SCR keyword or assumed from the
environment or program defaults), and stops if the directory does not exists, or if the directory attributes
do not allow writing by the running process. There is normally no need to include this command unless
scratch file locations different from the default are desired.

Tip: If the file name or directory path includes spaces (frequent on Windows systems),
it must be surrounded by quote characters (either single ’, or double " quotes). E.g.
SCR="c:/Program Files/PQS/scr"

SAVE=<string>: the value of <string> entered here will be used as basename for the current job. The
default basename (if the SAVE option is not present) is the job name.

3.2.3 CPU Command

Options: [INTS=<integer>] [ACCU=<integer>] [CACHe=<integer>] [MEMR=<integer>]
[DOUB=<integer>]

This command is now obsolete. It is maintained for backward compatibility only.

3.2.4 GEOM Command

Options: GEOM[=<string>] [FILE=<string>] [BOHR] [SYMM=<real>] [AXES] [GEOP] [D2HS]
[CHARge=<integer>] [MULT=<integer>] [NOORient] [NOCM] [PRINt=<integer>]
[FIELd=<real>,<real>,<real>]

GEOM: gives the style of the geometry input. NUCL is a synonym for GEOM. GEOM alone, with
no option specified, is equivalent to GEOM=READ. For compatibility with earlier versions of the PQS
software, the geometry style can also be defined separately as STYLe=<string>. The following input
styles are defined:

• READ: reads the geometry from an existing .coord file (see later).

• TX90: old TX90: (2X,A8,F10.2,3F10.6) gives name, atomic number(real!), x, y, z

N=C 6.0 0.0 1.123 -.975266

• PQS: standard input format: symbol, x, y, z, (atomic number(real!), atomic mass)
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C 0.0 1.123 -.975266 8.0 13.003355

The last two fields are optional (a default atomic mass will be provided). This format also allows
different molecules/groups of atoms to be defined by inserting $molecule as a designator, e.g.

H 3.831 -6.435 -0.145

H 3.374 -7.746 -0.163

$molecule

H 4.444 -0.057 1.298

H 3.528 0.026 0.256

to designate two hydrogen molecules. Separate molecules/structures need to be defined in order to
carry out cluster/surface optimizations or for QM/MM (see later).

• PQB: this is the format used by PQSMol, the graphical interface to the PQS program.

• PDB: Protein Database format.

• MOP: MOPAC Z-matrix format.

• CAR: Biosym .car file.

Note: .car files must be in a separate file and cannot be included in the input
stream e.g. GEOM=CAR FILE=molecule.car

• MOL: MDL .mol file.

Note: .mol files must be in a separate file and cannot be included in the input
stream e.g. GEM=MOL FILE=molecule.mol

• ZMAT: Gaussian Z-matrix.

• HIN: Hyperchem input (several structures are possible).

Atomic Symbols

The program stores up to 8 characters for the atomic symbol. For a real atom, the first two (or just the
first for a single symbol atom) must be those of a genuine atom in the periodic table. Dummy atoms (see
below) should begin with the symbols x (NOT xe, which will be taken as xenon), q or du. Atoms can be
numbered (numbers will be ignored). Additional symbols other than numbers are considered as “special
symbols” and are used to set different basis sets on different types of the same atom. Dummy atoms
(atoms not carrying basis sets) and ghost atoms (atoms without nuclear charge carrying basis sets) are
discussed further at the end of this section.

FILE=<filename>: take the molecular geometry from this file. This can be used in conjunction with
various GEOM options.
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Tip: If the file name contains spaces (frequent on Windows systems), it must be
surrounded by quote characters (either single ’, or double " quotes).
E.g. GEOM=PQB FILE="molecule 1.pqb"

BOHR: the coordinates are given in atomic units. The default, if this keyword is absent, is Angstroms.
Note that atomic units are used internally by the program, and in its internal files, e.g., .coord.

CHARge=<integer>: total molecular charge.

MULTiplicity=<integer>: multiplicity (1 - singlet, 2 - doublet, 3 - triplet etc...).

The default charge and multiplicity, if these keywords are not present, is 0 and 1, respectively (corre-
sponding to an uncharged closed-shell singlet).

SYMM=<real>: symmetry threshold. This is used to symmetrize a molecule whose coordinates are
not exactly symmetrical. The default is 10−5 Bohr. If, after a symmetry operation, the coordinates
of corresponding nuclei coincide within this margin, it is assumed that the molecule is symmetrical
but numerical errors (e.g., in a force field optimization) obscure the symmetry. Exact symmetry is
subsequently enforced. This feature is also useful if the molecular symmetry is violated during a geometry
optimization, due, e.g., to numerical errors in the gradient. To switch off symmetry during a calculation,
specify SYMM=0 or SYMM=0.0. Many modeling programs have fairly large errors in the optimized
geometry, requiring a symmetry threshold as large as 0.1 (Bohr). A too large threshold will confuse the
symmetrizer.

D2HS: An older symmetry algorithm for Abelian point group symmetry only. It can sometimes find
symmetry which the default symmetrizer misses. It is possible to use both in succession, as in

GEOM=MOPAC FILE=molecule.mop D2HS SYMM=0.3

GEOM SYMM=0.1

AXES: causes the program to calculate the principal axes of inertia. It would transform the molecule
to the principal axis system before symmetrization. This was sometimes useful but was removed when
the new symmetry algorithm was introduced.

GEOP: prints out all bonded interatomic distances, all bond angles and all proper dihedral angles. This
is much more useful than the indiscriminate printing of all bond distances and angles in some programs,
as the latter grows with the square and cube of the number of atoms, and leads to much unnecessary
printout. Equivalent to PRINt=3 (see below).

NOORient: suppresses the symmetry orientation of the molecule. The latter may lead to an interchange
of coordinate axes if the molecular symmetry changes, e.g., during the calculation of a numerical Hessian.

NOCM: suppresses the shifting of the center of mass to the origin.

FIELd=<real>,<real>,<real>: applies an external electric field of the value given (in atomic units)
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along the X, Y and Z axes, respectively.

PRINt=<integer>: controls the amount of printout (larger integer - more printout).

Dummy Atoms

Dummy atoms are used to mimic the effects of an applied field (by defining point charges) and – for
dummy atoms with no charge – to calculate properties (currently only the chemical shift) at particular
points in space.

Consider the following input

TEXT= Water with dummy atoms

GEOM=PQS

O1 0.0 0.0 -0.405840

H2 -0.793353 0.0 0.202920

H3 0.793353 0.0 0.202920 -1.00

X 0.0 0.0 10.000000 -1.00

X 0.0 0.0 -10.000000 1.00

X 0.50 0.50 0.50

This defines point charges along the z-axis at a distance of ±10 Å to mimic the effects of an applied field.
It also assigns a dummy center at (0.5, 0.5, 0.5) at which point a chemical shift will be calculated.

Note the order of the atomic centers here. All real atoms come first, followed by all charged dummy
atoms, followed by all uncharged dummy atoms. You can give your input in any order, but it will be
reordered internally by the program to the ordering shown. This is done for ease of symmetry recognition
and for geometry optimization, if requested.

Charged dummy atoms are included when determining the overall molecular symmetry (the applied field
may break symmetry) but uncharged dummies are ignored. For geometry optimization and vibrational
frequencies, all dummy atoms are ignored. You can optimize molecular geometries and compute vibra-
tional frequencies in the presence of an applied field. Note that, for symmetry purposes, all charged
dummy atoms with the same symbol (e.g. x) will be considered as the same type of “atom” and if the
charges are different, they may be flagged as symmetry-breaking, and the program will stop. To avoid
this, and still use symmetry, differently charged dummy atoms should be given different symbols. (See
input examples 9 and 10).

Note: Dummy atoms for charges are deprecated, having now been essentially su-
perceded by the FIELd option. The two methods should give very similar results for all
computed properties except the energy (which includes additional interactions between
the charges if point charges are used).
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Ghost Atoms

Ghost atoms are “real” atoms for which the atomic charge has been set to zero. The ghost atom will
be assigned its usual complement of basis functions, but with a zero charge, there will be no real atom
there. In this way, basis functions can be centered at points in space, e.g., to take account of basis set
superposition error.

For example

O1 0.0 0.0 -0.405840 0.0

will assign a zero charge to the “oxygen” atom, keeping all its basis functions.

Ghost atoms are included when determining the molecular symmetry and will be recognized during a
geometry optimization. The dummy center will “move”, and its position will be optimized with respect
to the real atoms (whatever this means?)

Dummy and ghost atoms may only be input using TX90 or PQS formats, or from a coord file. Any
other file format may be converted to Cartesian by running PQS with the GEOM command only. The file
.coord will contain the geometry, in standard format, in Bohr units. This can be augmented with dummy
or ghost atoms and read in using the command GEOM or with GEOM=PQS BOHR FILE=<coord-file>. The
GEOM command (without an option) reads the geometry from the file .coord in Bohr units.

3.2.5 BASIs Command

This command may be optionally followed by an equal sign (=) and a legal basis set name.

Options: BASIs[=<string>] [FILE=<string>] [NEXT] [DUMMy] [PRINt]

Some basis sets are built into the program itself to facilitate testing. However, the program takes all
standard basis sets from a basis set library if it finds one. The location of the basis set library is
determined from the environmental variable PQS BASDIR (default: $PQS ROOT/BASDIR under Linux or
%PQS ROOT%\BASDIR under Windows).

A number of basis sets are available in several formats, including the TEXAS/TX90/TX93 format used
by PQS, on the Basis Set Exchange web site hosted by PNNL at https://bse.pnl.gov/bse/portal. Most of
the basis sets in the PQS BASDIR directory have been taken from this site. Note that we have corrected
several minor errors and omissions, and changed the format of exponents and contraction coefficients to
ensure higher accuracy. We acknowledge the public service of PNNL for supporting this basis library.

The most important basis sets available in the library are listed in tables 3.2, 3.3, and 3.4. To use any of
the basis sets listed in these tables, simply specify BASIs=<basis set name> where <basis set name>
is one of the names given in the tables, E.g., BASIs=cc-pVTZ, or BASIs=vdzp ahlrichs.
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Table 3.2: Pople-Type Basis Sets

Name Type Available Elements
STO-2G minimal H–Ca, Sr
STO-3G minimal H–Sr, Te
STO-6G minimal H–Kr
3-21G split-valence H–Sr, Te
4-21G split-valence H, B, C, N, O, F
4-22G split-valence H–Ar
4-31G split valence H–Ne, P, S, Cl
6-31G split-valence H–Kr
m6-31G improved 6-31G for transition metals H–Kr
6-311G valence triple-zeta H–Ca, Ga, Ge, As, Br, Kr

Note: The Pople-Type basis can be supplemented with polarization and diffuse
functions, e.g. m6-31G*, 6-311+G**, or similarly in the (d,p) notation: m6-31G(d),
6-31+G(d,p), 6-311G(d).

Table 3.3: Dunning Correlation-Consistent Basis Sets

Name Type Available Elements
cc-pVDZ polarized valence double-zeta H, He, B–Ne, Al–Ar
cc-pVTZ polarized valence triple-zeta H, He, B–Ne, Al–Ar
cc-pVQZ polarized valence quadruple-zeta H–Ar, Ga–Kr
cc-pV5Z polarized valence quintuple-zeta H–Ar, Ga–Kr
cc-pV6Z polarized valence sextuple-zeta H, B–Ne
cc-pCVDZ polarized core/valence double-zeta B–Ne
cc-pCVTZ polarized core/valence triple-zeta B–Ne
cc-pCVQZ polarized core/valence quadruple-zeta B–Ne
cc-pCV5Z polarized core/valence quintuple-zeta B–Ne

Note: The Dunning basis sets are available with additional diffuse functions as, e.g.
aug-cc-pVDZ etc. . . (the aug-cc-pV6Z basis is only available for H, B, C, N, O).

There are additional basis sets in the EXTRA subdirectory, and extra polarization sets in the POL
subdirectory. There is a file Table that lists the filenames of the root basis sets, and a file Symbols which
describes all the basis sets in more detail.

In addition to the default basis library, basis sets can be read in from files using the FILE option. E.g.,
BASIS FILE=mybasis.bas will read the basis from the named file.
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Table 3.4: Other Basis Sets

Name Type Available Elements
svp ahlrichs Ahlrichs polarized split-valence H–Kr
vdz ahlrichs Ahlrichs valence double-zeta H–Kr
vdzp ahlrichs Ahlrichs polarized valence double-zeta H–Kr
dz ahlrichs Ahlrichs double-zeta H–Kr
dzp ahlrichs Ahlrichs polarized double zeta H–Kr
tzv ahlrichs Ahlrichs triple zeta valence (1994) H–Kr
dz dunning Dunning double-zeta H, Li, B–Ne, Al–Cl
dzp dunning Dunning polarized double-zeta H, Li, B–Ne, Al–Cl
tz dunning Dunning triple-zeta H, Li–Ne
dzvp-dfta polarized valence double-zeta H–Xe
dzvp2-dfta double-polarized valence double-zeta H–F, Al–Ar, Sc–Zn
vtz gamess valence triple-zeta from GAMESS H,Be–Ar
midi Huzinaga valence double-zeta H–Na, Al–Ar, K,Cs
midi1 ditto + polarization (NOT for C) H, C–F, Si–Cl, Br, I
mini Huzinaga minimal H–Ca
mini-sc ditto, but rescaled exponents H–Ca
pc-n (n=0-4) Jensen polarization-consistent H, C–F, Si–Cl
aug-pc-n (n=0-4) ditto, but with extra diffuse functions H, C–F, Si–Cl

aBasis set specifically optimized for DFT wavefunctions.

Tip: If the file name contains spaces (frequent on Windows systems), it must be
surrounded by quote characters (either single ’, or double " quotes).
E.g. BASIs FILE="My Basis.bas"

Basis sets, both standard and via the FILE option, can be augmented via the NEXT command

BASIS=6-311G NEXT

FOR C

D 0.8

FOR O

D 0.8

F 0.9

This input will take the standard 6-311G basis for carbon and oxygen, and add to it a 5d polarization
function on C with exponent 0.8, and 5-component d and 7-component f polarization functions on O
with exponents 0.8 and 0.9, respectively.

Different basis sets for the same atom type can be handled by specifying a “special character” (!@#$%^&*+=<>?)
on the atomic symbol during the GEOM input.

%MEM=1 core=2
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TEXT= Water with different basis set on each H

GEOM=PQS

O1 0.0 0.0 -0.405840

H2 -0.793353 0.0 0.202920

H3$ 0.793353 0.0 0.202920

BASIS=6-31G* NEXT

FOR H$ BASIS=3-21G

GUESS

This input will perform a calculation on water with the 6-31G* basis set on O and one of the H atoms,
and the 3-21G basis on the other H atom. When assigning the original basis set, only atoms without
“special symbols” will be recognized (numbers are ignored). Thus only atoms O1 and H2 will be given
a basis. The symbol H3$ is interpreted as H$ and will not be recognized in the standard basis. A full
basis for the “special symbol” atoms must then be given, as in the example above. This feature is often
very useful for NMR chemical shift calculations, using Chesnut’s attenuated basis method [1] (i.e., using
smaller basis sets for other atoms than for the atom of interest).

Note that if the NEXT command is used both with an extra basis set and with extra basis functions, e.g.,

FOR C$ BASIS=6-311G*

FOR C$

F 0.8

the extra basis functions (F in this case) must be given after the basis set. The opposite

FOR C$

F 0.8

FOR C$ BASIS=6-311G*

will not work.

Note: Unlike most other input keywords, basis set input is FORMATTED. The
general rule is that any field (whether number or character string) occupies 10 columns
with character strings starting on the first column of the field. Thus the string FOR

C indicating the start of a basis input for carbon must have FOR starting in column 1
with the C starting in column 11. A detailed specification of the basis set format is given
below.

DUMMy: Atoms which pass through the BASIS module without being assigned any basis functions
will be flagged, and the program will stop. If you genuinely desire that an atomic center be given no
basis functions (just a point charge, or dummy atom) you should add this keyword.
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To add a GHOST atom (i.e., an atom with no charge but with basis functions, e.g., for an estimate of
the basis set superposition error) the atomic charge should be set to zero in the GEOM module.

PRINt: prints full details of the basis set

Format For Basis Set Specification

This information is only necessary if non-standard basis sets are used. The basis set information is
formatted. Each piece of data occupies a field 10 characters long, i.e., the first field occupies columns
1–10, the second columns 11–20, etc...

The basis set data for a particular atom is preceded by a line containing the keyword FOR in columns
1–3, and the atom name in columns 11–18. This is followed by the data for each primitive shell: type,
exponent, and contraction coefficients (format (A3,7X,10F10.5)). A non-blank shell type signals the
beginning of a new contraction, or, if it is not one of the legal basis function types, the end of the basis
set data. The first field, the shell type should be blank for all primitive shells, except for the very first
shell in the contraction. The following shell types are available:

blank signals the continuation of a contraction, with the same shell type
S s type
P p type
L sp type, i.e., a set of s and p functions sharing the same exponents

but different contraction coefficients
D spherical harmonic (5 component) d functions
D6 Cartesian (6 component) d functions
F spherical harmonic (7 component) f functions
F10 Cartesian (10 component) f functions
G spherical harmonic (9 component) g functions
G15 Cartesian (15 component) g functions
H spherical harmonic (11 component) h functions
H21 Cartesian (21 component) h functions
I28 Cartesian (28 component) i functions

The next piece of data is the exponent in atomic units (a−2
0 ). It is followed by up to 9 contraction

coefficients, starting in columns 21,31,. . . 101. A single contraction coefficient with a value of 1.0 can be
omitted. For L type functions, two contraction coefficients are given: the first one for the S functions, and
the next for the P functions. For the usual segmented contractions, only a single contraction coefficient
is given, unless the basis function is of L type. If there is more than one non-zero contraction coefficient,
and the function type is not L, it is assumed that general (Raffenetti) contractions are employed [2]. In
the general contraction scheme, more than one contracted basis function is formed from the same set of
primitive functions. Their most prominent representatives are the correlation consistent (cc) basis sets of
Dunning and coworkers (see the references in your <PQS BASDIR/Symbols> file). Atomic natural orbitals
(ANOs) are also of this type but they are, in general, very inefficient.
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Examples

FOR C

S 172.256 .0617669

25.9109 .358794

5.53335 .700713

L 3.66498 -.395897 .23646

.770545 1.21584 .860619

L .195857

This is the 3-21G basis for carbon. Its first contraction consists of 3 primitive s functions with exponents
172.256, 25.9109 and 5.53335, contracted to a single 1s core function. The next contraction consists of two
sp (L) type shells (exponents 3.66498 and 0.770545). The contraction coefficients for the s type orbital
are –0.395897 and 1.21584; the p contraction coefficients are 0.23646 and 0.860619. These form the inner
part of the 2s and 2p orbitals. The last shell is an uncontracted sp function with exponent 0.195857.
According to the rules of Fortran, the numbers must fit in their fields (10 character long) but they can
be shifted right and left within the field. They are lined up in the above example but this is optional.
Numbers in exponential format, e.g., 3.1763E5 are permitted. However, in this case the numbers must
be right justified, i.e., the characters E5 must occupy columns 19 and 20.

For a general contraction:

FOR N

S 45840.0000 0.000092 -0.000020

6868.00000 0.000717 -0.000159

1563.00000 0.003749 -0.000824

442.400000 0.015532 -0.003478

144.300000 0.053146 -0.011966

52.180000 0.146787 -0.035388

20.340000 0.304663 -0.080077

8.381000 0.397684 -0.146722

3.529000 0.217641 -0.116360

S 1.428000

S 0.554700

S 0.206700

This is the s part of the cc-pVQZ (correlation-consistent polarized valence quadruple zeta) basis for
nitrogen. This basis employs general contraction in the 1s-2s region.

Effective Core Potentials

Effective Core Potentials (ECPs) can be used to model the effect of core electrons for heavy atoms
(typically fourth-row or higher, but can be used even for second-row elements) in order to reduce the
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complexity of the calculation. They are often constructed on the basis of relativistic calculations, and
can thus be seen as an indirect way of introducing relativistic effects.

ECPs (aka pseudopotentials) usually fall into two categories: “large core”, which include in the definition
of the core all but the outermost electrons, and “small core”, which leave the two outermost electronic
shells in the valence space. The latter generally provide better results, but are more expensive to use,
due to the larger number of electrons that are left to be treated explicitly.

To use pseudopotentials in a PQS run, simply use one of the ECP library basis sets provided, or explicitly
add a pseudopotential specification to the basis set input using the NEXT option, as described below.
ECPs are supported in every computational step: energy, gradient, analytical and numerical Hessian,
and NMR, for Hartree-Fock and DFT wavefunctions, as well as energy, gradient, and numerical Hessian
at the MP2 level.

When ECPs are to be used in the calculation, the output file will contain a summary description of the
pseudopotentials involved, located immediately after the basis set specification. Information is provided
on the number of electrons that are to be simulated by pseudopotentials, the number of ECPs involved,
as well as the corrected value of nuclear repulsion energy, as in the following example:

Pseudopotentials will be used:

84 electrons simulated by 13 pseudopotentials ( 46 radial terms)

Nuclear repulsion energy after psp correction: 451.404073102 au

If the PRINT option is present, a detailed specification of the ECPs will be printed after the basis set
output.

ECP Library Basis Sets

The simplest way to introduce pseudopotentials in a PQS calculation is to use one of the built-in ECP
basis sets described below. To do this, use one of the names listed as the basis set name for the calculation.
Note that many of these bases contain not only the pseudopotential specification and valence basis set
for the atomic centers carrying an ECP core, but also a matching basis for light elements (i.e., elements
without an ECP core).

Five types of pseudopotentials are available:

• Stevens-Basch-Krauss-Jaisen-Cundari compact effective potentials (CEP) [3].

These large core ECPs are listed in Table 3.5. They are available with three different contractions
of the valence basis.

• Hay-Wadt Los Alamos National Laboratory (LANL) relativistic ECP [4].
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Table 3.5: CEP pseudopotential basis

Name Type Available Elements
cep-4g large core, minimal basis H–Rn
cep-31 large core, double-zeta basis H–Rn
cep-121 large core, triple-zeta basis H–Rn

Note: The different contractions of the CEP basis apply only to elements H–Ar

Table 3.6: LANL relativistic ECP

Name Type Available Elements
lanl1mb large core, minimal basis H–La, Hf–Bi
lanl1dz large core, double-zeta basis H–La, Hf–Bi
lanl2mb small core, minimal basis H–La, Hf–Bi
lanl2dz small core, double-zeta basis H–La, Hf–Bi, U–Pu
lanl2dzdp ditto, plus diffuse and polarization H, C–F, Si–Cl, Ge–Br, Sn–I, Pb, Bi

Note: The lanl1 and lanl2 basis differ only for metals K–La, Hf–Au

In this set there are both large core and small core pseudopotentials, available with a minimal and
a double-zeta valence basis. They are listed in Table 3.6.

• Christiansen-Ross-Ermler-Nash-Bursten (CRENB) shape-consistent relativistic ECP [5].

In this set there are large core pseudopotentials coupled with a small valence basis, and small core
pseudopotentials coupled with a large valence basis. They are listed in Table 3.7.

• Stuttgart-Cologne relativistic ECP [6]

Several large and small core ECPs, coupled with a variety of valence basis are available from this
set, see Table 3.8. We have organized them into two main library files, for large core and small
core pseudopotentials, covering a large number of elements, plus additional sets covering only a
limited number of elements but with some special ECPs or valence basis definitions. Additional
pseudopotentials and basis sets can be downloaded from the Stuttgart-Cologne group web page at
http://www.theochem.uni-stuttgart.de/pseudopotentials/index.en.html.

• Karlsruhe def2 basis sets [7].

Basis sets of split-valence, triple-zeta valence and quadruple-zeta valence quality for H–Rn (except
lanthanides) developed by the Ahlrichs group at Karlsruhe, Germany. These basis sets use the
Stuttgart–Cologne pseudopotentials (above) commencing with Rb (fourth row and greater). Two
sets of polarization functions are available, see Table 3.9. The central idea behind these basis sets
is a balanced description (similar errors) across the entire periodic table at each basis set level.
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Table 3.7: CRENB relativistic ECP

Name Type Available Elements
crenbs large core, small basis H–Ca, Sc–Kr, Y–Xe, La, Hf–Rn, Rf
crenbl small core, large basis H–Np

Table 3.8: Stuttgart-Cologne relativistic ECP

Name Type Available Elements
srlc large core, double-zeta+ basis H–Ca, Zn–Sr, Cd–Lu, La, Hg–Rn Ac–Lr
srsc small core, double-zeta+ basis K–Rn, Ac–Lr
srlc-cc-pvtz large core + cc-pvtz basis Ga-Kr, In-Xe
srlc-aug-cc-pvtz ditto + aug-cc-pvtz basis Ga–Br, In–I
srlc-cc-pvqz ditto + cc-pvqz basis Ga–Kr, In–Xe
srlc-aug-cc-pvqz ditto + aug-cc-pvqz basis Ga–Br, In–I
srsc-cc-pvdz small core+ cc-pvdz basis Ga–Kr, In–Xe, Tl–Rn
srsc-aug-cc-pvdz ditto + aug-cc-pvdz basis Ga–Kr, In–Xe, Tl–Rn
srsc-cc-pvtz ditto + cc-pvtz basis Ga–Kr, In–Xe, Tl–Rn
srsc-aug-cc-pvtz ditto + aug-cc-pvtz basis Ga–Kr, In–Xe, Tl–Rn
srsc-cc-pvqz ditto + cc-pvqz basis Ga–Kr, In–Xe, Tl–Rn
srsc-aug-cc-pvqz ditto + aug-cc-pvqz basis Ga–Kr, In–Xe, Tl–Rn
srsc-cc-pv5z ditto + cc-pv5z basis Ga–Kr, In–Xe, Tl–Rn
srsc-aug-cc-pv5z ditto + aug-cc-pv5z basis Ga–Kr, In–Xe, Tl–Rn
srsc-ano small core, ano basis La–Lu, Ac–Lr
srsc-ano-seg ditto + segmented ano basis La–Lu, Ac–Lr

User-Defined Pseudopotentials

The PQS implementation of ECPs is consistent with the form of the pseudopotential operator first defined
by Kahn and Goddard in 1972 [8]:

Vpsp = (Z − nc) + Vl +
l−1∑
i=0

(Vl − Vi) Pi

where Z is the atomic number, n is the number of core electrons, r is the radial distance, Pi are angular
momentum projectors, Vl is the local term and (Vl−Vi) are the semi-local terms. Both local and semi-local
terms are given as linear combinations of Gaussian components

V =
m∑

j=1

cjr
nj−2 exp

{
−γjr

2
}

where cj are expansion coefficients, nj are integers (usually in the range 0–2), and γj are the exponents
of the Gaussian terms. Thus, for each pseudopotential the following information needs to be specified:
the number of core electrons nc and the maximum value of angular momentum l, then for the local term
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Table 3.9: Def2 basis set

Purpose of the Calculation
Method Explorative Qualitative Quantitative Reference

DFT def2-svp def2-tzvp def2-qzvp
HF def2-svpp def2-tzvpp def2-qzvpp
MP2, CC def2-svpp def2-tzvpp def2-qzvpp

and for each of the semi-local terms in turn, the number of expansion terms m, and a series of values for
cj, nj and γj.

User-defined ECPs can be added to the input file using the NEXT option (as for normal basis set
augmentation). As for the latter case, the input starts with a formatted line containing the word FOR in
columns 1–3, and an atomic symbol in columns 11–18. The rest of the pseudopotential input is in free
format (i.e., fields must be separated by at least one space). The second line must contain the keyword
ECP, followed by the number of core electrons nc and the maximum angular momentum l. The keyword
PSP may be used instead of ECP. Next comes the specification of the local potential term: one line
containing the number of expansion terms m, followed by m lines each containing a triplet of values for
cj, nj and γj in that order. Specification of the semi-local potential terms follows, comprising l sections,
each starting with a line containing an m value, followed by m lines containg cj, nj and γj values.

Examples

FOR AL

ECP 10 2

1 ----- d potential -----

-3.03055000 1 1.95559000

2 ----- s-d potential -----

6.04650000 0 7.78858000

18.87509000 2 1.99025000

2 ----- p-d potential -----

3.29465000 0 2.83146000

6.87029000 2 1.38479000

This is the specification of the CEP pseudopotential for aluminum. There are 10 core electrons and the
maximum l value is 2. The local part (d potential) has only one expansion term with c=−3.03055, n=1,
and γ=1.95559, respectively. The s-d semi-local potential is given as linear combination of two terms,
with c1=6.0465, n1=0, γ1=7.78858, and c2=18.8759, n2=2, and γ2=1.99025, respectively. The second
semi-local potential (p-d) is defined in a similar way. Note that the comments have been added only for
the sake of clarity – they may be omitted from the actual input.

If the ECP specification follows the basis set input for the same atomic center, the initial line (the one
containing the FOR keyword) may be omitted, as in the following example, which provides the complete
specification of the lanl2mb pseudopotential and basis set for iron:
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FOR FE

S 6.422000 -.392788 .095044

1.826000 .771264 -.223080

0.713500 .492023 -.242981

0.102100 .000000 .586952

0.036300 .000000 .542852

P 19.480000 -.047028

2.389000 .624884

0.779500 .472254

P 0.074000 .517173

0.022000 .584079

D 37.080000 .028292

10.100000 .153707

3.220000 .385911

0.962800 .505331

0.226200 .317387

ECP 10 2

3 ----- d potential -----

-10.00000000 1 392.61497870

-63.26675180 2 71.17569790

-10.96133380 2 17.73202810

5 ----- s-d potential -----

3.00000000 0 126.05718950

18.17291370 1 138.12642510

339.12311640 2 54.20988580

317.10680120 2 9.28379660

-207.34216490 2 8.62890820

5 ----- p-d potential -----

5.00000000 0 83.17594900

5.95359300 1 106.05599380

294.26655270 2 42.82849370

154.42446350 2 8.77018050

-95.31642490 2 8.03978180

3.2.6 GUESs Command

Options: GUESs[=<string>] [FILE=<string>] [UHFS] [SWAP=<integer>,<integer>]
[SWAB=<integer>,<integer>] [MIX=<integer>,<integer>] [ANGLe=<real>] [PRINt=<integer>]

The GUESS command provides an initial set of MOs to start off an SCF calculation. In most cases,
this command is unnecessary, as the SCF program sets the starting orbitals automatically. The GUESS
command may optionally be followed by an equal sign and a guess type:

• GUESS=PM3|AM1|MNDO|MINDO semiempirical guess available for any elements for which
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the corresponding semiempirical method has been parameterized (see the SEMI command for a
list of available atoms)

• GUESS=HUCKEL extended Hückel guess available for H–Kr

• GUESS=CORE modified core guess available for all elements

• GUESS=ATOM guess computed by superposition of atomic densities

• GUESS=READ use transformed SCF vectors from a previous calculation. This can be either
a previous ab initio calculation with the same or a smaller basis set (fewer basis functions), or a
semiempirical calculation.

Tip: GUESS=READ has a suboption FILE=<filename> where <filename> is the
name of the file containing the initial guess MOs. Normally MOs will be read from
the current MOs file in the working directory; however if you have a specific set of
MOs available that you wish to use (e.g., from a related job) then these can be read
via the FILE option. You can specify a full directory path in <filename>; however
the file extension—which must be .mos (.mob for beta MOs)—should not be given.
Additionally there must be a basis file with the same filename (and extension .basis)
in the same location as the MOS file for this option to work properly.

The simplest guess is the modified core guess which gets the initial MOs by diagonalizing just the one-
electron part of the Hamiltonian, modified to omit the potential from distant nuclei. Unfortunately this
is usually the worst option. The extended Hückel guess [9, 10] involves setting up and diagonalizing the
so-called Hückel Hamiltonian, given by

Hii = hii Hij = 0.5K (hii + hjj) Sij

where hii is taken to be the orbital energy, εi, associated with orbital i, and S is the overlap matrix. K
is a constant, typically taken to be 1.75. In our implementation of the extended Hückel method, we have
used the scaled mini basis as an underlying minimal basis set, and we take (estimated rather crudely)
different values for K depending on the atom type and the iteration (first row-first row has a different
K than first row-third row, for example). This Hückel guess performs better than we expected, and is in
fact the only option for systems containing transition metals.

The MOs obtained from the Hückel method are given in terms of a particular minimal basis. These are
then projected onto the actual basis via [11]

C1 = S−1
11 S12C2

(
Ct

2S
t
12S11

tS12C2

)− 1
2

where 1 represents the actual basis and 2 the minimal Huckel basis. This projection scheme is general,
and is also used when reading in converged MOs from a previous calculation (either with the same or a
different basis set).
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The semiempirical guess sets up and solves the SCF equations using the requested semiempirical method.
Because semiempirical theory does not explicitly consider atomic cores, the final semiempirical MOs are
valence MOs only and the missing core orbitals need to be added before they can be used in the ab initio
code. In the current implementation, these are simply taken to have a coefficient 1 for the core and zero
for all other basis functions. The underlying basis functions for the semiempirical MOs are in fact Slater
orbitals, and each Slater orbital is expanded into three Gaussians using standard fitting coefficients [12].
The core orbitals are also expanded, either in the STO-3G basis, or in Huzinaga’s MINI-SC basis [13].
This set of MOs is then projected onto the actual basis in the same way as for the Hückel guess.

The best option is usually GUESS=READ and this is the default for a geometry optimization (i.e., to
use the converged MOs from the previous geometry to start off the SCF at the current geometry). The
best guess for a cold start is usually PM3, and this is the default if no guess type is specified. PM3 is
available for all main group elements through the fourth row, except for the rare gases, and also for zinc
and cadmium. It is not available for any other transition metals, for which either the HUCKEL (third
row) or CORE guesses must be used. The HUCKEL guess is often better than PM3 for closed-shell
systems containing third row main group elements.

If no guess type is specified, then the PM3, HUCKEL and CORE guesses are attempted, in that order,
until one of them works. Note that the options that are available with the SEMI command in case of
SCF convergence problems cannot be used with the GUESS command, which simply uses the default
values. If you experience problems with any of the semiempirical guess options, you should converge the
wavefunction using the full semiempirical module and use GUESS=READ to read in the converged
MOs.

Other options are:

UHFS: requests an unrestricted singlet wavefunction.

PRINt=<integer>: controls the amount of printout (larger integer - more printout).

SWAP=<integer1>,<integer2>: this swaps the occupancies of occupied and virtual alpha/closed-shell
MOs. The first integer should point to an occupied orbital; the second to a virtual (integer1 < integer2).
If no orbitals are specified, then the HOMO and LUMO are swapped.

SWAB=<integer1>,<integer2>: same as SWAP, only for beta orbitals.

MIX=<integer1>,<integer2>: unrestricted wavefunctions only. Mixes alpha and beta occupied and
virtual MOs. This typically destroys any molecular symmetry (which, if present, should be turned off via
SYMM=0 on the GEOM card) and is usually used in an attempt to converge to a lower energy UHF
singlet (as opposed to a closed-shell RHF singlet). The mixing is given by (integer1 < integer2)

Ψα(1) = cos(A)Ψα(1) + sin(A)Ψβ(2)
Ψβ(1) = cos(A)Ψβ(1) + sin(A)Ψα(2)

where A is the rotation angle. This angle can be specified by
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ANGLe=<real>: where <real> is the rotation angle in degrees. The default is A = 30◦.

Note: SWAP and MIX do NOT work directly with GUESS=CORE

Practical Aspects

From a practical point of view the GUESs options perform best when the basis set is small, e.g., STO-3G
or 3-21G.

For medium-sized and large molecules with the 6-31G* and larger basis sets, better performance (i.e.,
more rapid convergence) is usually achieved by starting with a few SCF cycles (say 6) using a smaller
basis. For example

BASIS=3-21G

GUESS

SCF ITER=6

BASIS=6-31G*

GUESS=READ

SCF

As pointed out below, the two GUESs commands here are optional and can be omitted with no ill
effects. They are included here only to show the logic of the calculation.

With very large basis sets, a staggered approach may be best, e.g.

BASIS=3-21G

GUESS

SCF DFTP=B3LYP ITER=6

BASIS=6-31G*

GUESS=READ

SCF DFTP=B3LYP ITER=6

BASIS=6311G(2d,p)

GUESS=READ

SCF DFTP=B3LYP

Tip: We have now included standard defaults within the SCF module and in most
cases it is no longer necessary to include a GUESs card in the input deck. The GUESs
card must be present only if you wish to force a particular (non-default) guess type or if
you want to manipulate the final guess MOs (e.g., with SWAP or MIX).
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Note: The restriction in previous versions of the program (3.2 and earlier) with
GHOST atoms (see GEOM) to the CORE guess only has now been removed.

3.2.7 INTE Command

Options: [THREshold=<real>[,<real>]] [LIMIts=<integer><integer>,<integer>]
[ROUTe=<integer>] [ONEL] [STABle=±1] [PRINt=<integer>]

This command can be used to redefine the precision of the integrals used in the final and the preliminary
SCF iterations, the blocking parameters, and the integral strategy (route). It is usually not needed.

In a typical SCF, a “sloppy” threshold is used either for the first 10 cycles or until the Brillouin criterion
(a measure of SCF convergence) reaches 10−3 (whichever comes sooner); thereafter a tighter threshold
is used to achieve convergence. The default thresholds are 10−7 and 10−10, respectively. For larger
molecules containing basis sets with diffuse functions or for medium/large UHF calculations, it is a good
idea to increase the final integral threshold to 10−11 or 10−12.

THREshold=<real>[,<real>]: Final and optionally also the starting integral threshold, in “pH” form,
i.e., its negative logarithm is given (thus 7 corresponds to 1.0E-7).

LIMIts=<integer><integer>,<integer>: Integral blocking parameters limxmem, limblks and limpair.
The default values are 300,000, 300 and 100 for SCF. For FORCES and NMR, the default limxmem
is 800,000. It is not recommended to change these parameters. If there is a severe memory problem,
decreasing limxmem or the other two parameters may help. Also, slightly increasing them may result in
minor performance enhancements. For high angular momentum basis functions (g and in particular h
and i functions), it is necessary to increase limxmem and often decrease limpair. Note that if you change
one of these parameters, values for all three must be given.

ROUTe=<integer>: Values are 1 or 2. Manually sets the integral route, i.e., the path through
the integral code. Needed only in exceptional cases. ROUTe=2 is more efficient if there are many
identical atoms while ROUTe=1 is better if all atoms are different. Usually, the program determines
this information internally, but it can be forced to take a different route.

ONEL: only one-electron integrals are calculated (used only for testing).

STABle=±1: -1 switches on stability checking for two-electron integrals; +1 switches it off (i.e., assumes
all integrals are stable). Under certain circumstances, most notably for basis functions with very large
exponents (normally upwards of a million) the standard integral evaluation algorithm is unstable. The
potential for instability is detected during basis set read-in, and STABle is set accordingly. Switching
on stability checking will detect any instabilities and use a modified algorithm to evaluate the unstable
integrals. Checking for instabilities does take time, and so if this option is invoked the calculation will
take longer. The default can be overridden by specifically setting STABle here.
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PRINt=<integer>: It must be 1 or 2. If it is 1, the one-electron integrals are printed, if 2, the 2-electron
ones. Both options, particularly the latter, can produce extremely voluminous output, so they should be
used only for small molecules.

3.2.8 SCF Command

Options: [DFTP=<string>] [THREshold=<real>] [ITERations=<integer>] [DIIS=<real>]
[LVSHift=<real>] [PSEUdo=<real>] [STHReshold=<real>] [NODD[=<integer>]] [VIRT=<integer>]
[GRID=<real>] [FACTor=<real>] [LOCAlize=<string>] [GRANularity=<integer>]
[ANNEal=<real>] [SEMI] [PWAVe] [PRINt=<integer>]

The SCF command controls the SCF module of PQS.

Note: Only RHF (Restricted Hartree-Fock) and UHF (Unrestricted Hartree-Fock)
SCF has been implemented so far, no ROHF. The type of the calculation will be auto-
matically set according to the multiplicity to RHF or UHF.

DFTP=<string> (or DFT=<string>): The DFT exchange-correlation potential to be used in the
calculation. Possible values include:

• HFS Slater local exchange [14].

• SVWN Slater local exchange plus Vosko, Wilk and Nusair local correlation [15] using the RPA fit
(this is the “wrong” functional but is the one used by Gaussian).

• SVWN5 Ditto, but using the “correct” Ceperley-Alder fit (this is the functional recommended in
the original 1980 paper).

• HFB Slater local exchange plus Becke’s 1988 nonlocal exchange [16].

• BVWN as HFB plus VWN local correlation (RPA fit).

• BVWN5 as HFB plus VWN local correlation (CA fit).

• BLYP Slater local exchange plus Becke’s 1988 nonlocal exchange plus Lee, Yang and Parr’s nonlocal
correlation [17].

• BP86 Slater local exchange plus Becke’s 1988 nonlocal exchange plus Perdew’s 1986 local and
nonlocal correlation [18].

• BVP86 as BP86 but with Perdew’s 1986 local correlation replaced by VWN local correlation (CA
fit) - used with COSMO.

• BPW91 Slater local exchange plus Becke’s 1988 nonlocal exchange plus Perdew and Wang’s 1991
nonlocal correlation [19].
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• OPTX Slater local exchange plus Handy and Cohen’s optimized exchange [20].

• OVWN as OPTX plus VWN local correlation (RPA fit)

• OVWN5 as OPTX plus VWN local correlation (CA fit)

• OLYP Slater local exchange plus Handy and Cohen’s optimized exchange plus Lee, Yang and
Parr’s nonlocal correlation.

• OP86 Slater local exchange plus Handy and Cohen’s optimized exchange plus Perdew’s 1986 non-
local correlation.

• OPW91 Slater local exchange plus Handy and Cohen’s optimized exchange plus Perdew and
Wang’s 1991 nonlocal correlation.

• PW91 Slater local exchange plus Perdew and Wang’s 1991 nonlocal exchange plus Perdew and
Wang’s 1991 nonlocal correlation.

• B3LYP hybrid 3-parameter HF-DFT functional comprising combination of Slater local exchange,
Becke nonlocal exchange, VWN local correlation and LYP nonlocal correlation together with a
portion (20%) of the exact Hartree-Fock exchange [21].

• B3PW91 ditto, but LYP functional replaced by PW91 and VWN replaced by VWN5 (original
3-parameter hybrid recommended by Becke) [21].

• O3LYP hybrid 3-parameter HF-DFT functional comprising linear combination of Slater local ex-
change, Handy and Cohen nonlocal exchange, VWN5 local correlation and LYP nonlocal correlation
with a portion (11.61%) of the exact Hartree-Fock exchange [22].

• PBE Perdew, Burke and Ernzerhof [23].

• B97 Becke’s 1997 10-parameter hybrid [24].

• B97-1 ditto as reparameterized by Hamprecht, Cohen, Tozer and Handy [25].

• B97-2 ditto as reparameterized by Wilson, Bridley and Tozer [26].

• HCTH Hamprecht, Cohen, Tozer and Handy - parameterization 407 [27].

• WAH modified form of B3LYP (with only 5% exact exchange) used specifically for NMR chemical
shifts [28].

• USER user defined combinations, i.e., make up your own functional.

User-defined functionals are specified as follows: the line following the SCF command line (which must
contain DFTP=USER) must start with the 5 character string $user, followed by a list of coefficients
xf=<real>, with at least one blank space between each coefficient definition. xf can be one of the
following:
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ax coefficient for exact Hartree-Fock exchange
xs coefficient for Slater local exchange
xvwn coefficient for VWN local correlation
xvwn5 ditto for VWN5 local correlation
xb88 ditto for Becke’s 1988 nonlocal exchange
xoptx ditto for Handy and Cohen’s optimized nonlocal exchange
xp86l ditto for Perdew’s 1986 local correlation
xp86nl ditto for Perdew’s 1986 nonlocal correlation
xpw91x ditto for Perdew and Wang’s 1991 nonlocal exchange
xpw91l ditto for Perdew and Wang’s 1991 local correlation
xpw91nl ditto for Perdew and Wang’s 1991 nonlocal correlation
xlyp ditto for Lee, Yang and Parr’s nonlocal correlation
xpbex ditto for Perdew, Burke and Ernzerhof’s 1996 nonlocal exchange
xpbec ditto for Perdew, Burke and Ernzerhof’s 1996 nonlocal correlation

Typical usage would be

SCF DFTP=USER

$user ax=0.17 xs=0.83 xvwn=0.27 xbec=0.73

The Becke Half-and-Half functional [29], for which there is not a specific keyword in PQS, can be accessed
in this way via

$user ax=0.50 xs=0.50 xlyp=1.00

There has been a certain amount of confusion over the very popular B3LYP functional [30]. The original
3-parameter hybrid functional, as defined by Becke [21], was effectively B3PW91. When Gaussian released
their first DFT implementation they had not coded the PW91 functional, and so they replaced it by the
LYP functional – hence B3LYP. In addition to this, they erroneously used the wrong version of the VWN
functional (the RPA fit as opposed to the Ceperley-Alder fit). Due to the wide-spread use of the Gaussian
program, the Gaussian version of B3LYP became the de facto standard, despite the fact that at the time
of its release there were very little published data attesting to its quality, if indeed it had been properly
tested at all.

The Gaussian version of B3LYP, which is what you get by specifying this keyword, is equivalent to

$user ax=0.20 xs=0.80 xb88=0.72 xvwn5=0.19 xlyp=0.81

The version currently coded in, e.g., the GAMESS program, replaces the “incorrect” VWN5 functional
by VWN, and can be accessed via

$user ax=0.20 xs=0.80 xb88=0.72 xvwn=0.19 xlyp=0.81
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Note: Our own recent work suggests that both the OLYP and O3LYP functionals
are as good as, if not better, than B3LYP for general organic chemistry [31], although
this does not hold for transition metals [32].

THREshold=<real>: maximum Brillouin matrix element at convergence in pH form; default is 5.0
(which is 1.0× 10−5). If you need a tighter convergence than the default (e.g., for numerical frequencies
on a floppy molecule) then make sure the integral threshold is appropriate. A good rule of thumb is to
set the final integral threshold to at least twice the Brillouin threshold (in pH form), e.g., if the SCF
threshold is 5.5, the integral threshold should be 11.

ITERations=<integer>: maximum iteration count, default is 50.

DIIS=<real>: DIIS is a method for accelerating SCF convergence which is now used in virtually all
SCF codes [33]. Not switched on until the maximum Brillouin element is less than this value, default 2.0.

LVSHift=<real>: artificially shifts the energies of the virtual orbitals to help convergence (typical
values from 0.1 to 4.0) [34]. The default is an initial level shift of unity for DFT wavefunctions and zero
(i.e., no level shift) for HF, except for the core guess, when the default is again unity. After the first
cycle, the actual shift is controlled during the SCF procedure by the HOMO-LUMO gap, except that the
level shift on a particular SCF cycle cannot be less than 30% of its initial value.

PSEUdo=<real>: uses pseudo diagonalization [35] instead of full diagonalization of the Fock matrix.
Switched on when the maximum Brillouin element is less than the requested threshold (default is 0.005).
For unrestricted wavefunctions, or for restricted wavefunctions and less than 250 basis functions, pseudo
diagonalization is switched off by default.

STHReshold=<real>: threshold for suppressing linear combinations with very low norm in a nearly
linearly dependent basis sets, using a penalty function approach [36]. Default is 6.0 in pH form, corre-
sponding to 10−6. If the lowest eigenvalue of the overlap matrix is smaller than STHR then the procedure
is activated, and the inverse square of the overlap matrix, multiplied by STHR2 × 10−8, is added to the
Fock matrix. (For the default STHR, this factor is 10−20.) If the basis set is too linearly dependent
(e.g., has several interacting diffuse functions), the integral threshold should be tightened (see the INTE
command, above).

NODD[=<integer>]: switch off use of difference densities after <integer> SCF cycles. The default
is to use difference densities to construct a difference Fock matrix; however sometimes this can hinder
convergence due to numerical problems. Difference densities are no longer used by default if there is no
convergence after 30 cycles. Note that the last cycle (at convergence) always uses full densities. Specifying
NODD alone will use full densities every cycle.

GRID=<real>: controls grid quality in DFT calculations. Larger values, more grid points. Suggested
values are between 1.0 and 2.5 (default 1.25). GRID controls both the number of radial grid points and
also the maximum number of angular points per radial shell (i.e., the degree of “grid pruning”).
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Note: During the initial SCF cycles, whit the coarse integral threshold, GRID is set
to 60% of its final value.

FACTor=<real>: is an alias for the option GRID above, for compatibility with older PQS versions.

LOCAlize=<string>: Calculate localized orbitals using the method specified. Currently the Boys [37]
and the Pipek-Mezey [38] localizations are implemented (LOCA=Boys or LOCA=Pipek).

GRANularity=<integer>: This has an effect only for parallel jobs. The default is 20. To decrease
the communication overhead, the program at first assigns GRAN integral blocks to the slaves. Toward
the end of the calculation, this is reduced to single blocks. Too small value for GRAN results in excess
communication cost, too high a value involves the risk that one slave finishes much later than the rest,
resulting in idle time.

ANNEal=<real>: UHF only at present. If this option is specified, then the molecular orbitals are
given fractional occupancies according to Fermi-Dirac statistics:

ni =
[
1 + exp

(
εi − εF

kT

)]−1

.

Here ni is the occupation number of orbital i, εi is its orbital energy, εF is the Fermi energy, k is
Boltzmann’s constant and T is the absolute temperature. The Fermi level is calculated from the condition
that the total number of electrons is correct. The real number specified is the value of kT in atomic units
Eh. A value around 0.2 is reasonable. The temperature is reduced by 30% in each SCF cycle, hence the
name, annealing.

PRINt=<integer>: controls the amount of printout (larger integer - more printout) In particular, a
value of 3 will print the MO coefficients.

VIRT=<integer>: number of virtual orbitals to print if MO printout is requested (see the PRINt
keyword above).

Semidirect DFT

SEMI: Activates semi-direct mode for both integral evaluation and storage and the DFT part of the
calculation. The DFT part of this was actually available in previous releases (from PQS v. 2.5) as an
undocumented feature. It was documented in the PQS v. 3.2 manual.

The normal DFT SCF algorithm is “fully direct” in that all quantities are recomputed on every SCF
cycle. We have implemented a “semidirect” algorithm, which saves certain DFT quantities and reuses
them on the next cycle; specifically these are the atomic integration grids, the density over the grid and
the potential over the grid. This enables delta densities and delta potentials to be used when computing
the exchange-correlation energy which can lead to significant savings for larger systems. These ideas
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have been discussed in a published article [39] , for which see for more details. To activate semidirect
DFT simply add the keyword SEMI onto the SCF command line. Note that several files (three for each
symmetry-unique atom) are written to your scratch directory, both on the master and on the slave nodes
for parallel jobs. These may not all be deleted, especially on a job crash, and so you should check your
scratch directory periodically (on each node) and remove dead files when using this option.

The original meaning of “semidirect” was the storage of some integrals, typically the more computationally
expensive ones, so that they could be reused on subsequent SCF cycles as opposed to being continuously
recalculated. This has now been fully implemented, both for integrals stored in core memory or on disk.
(Note that this is either one or the other, not both.)

The amount of in-core memory or disk space available to store integrals is specified on the memory
card, via the options CORE or DISK (see the %MEM command). Integrals are computed (using the final
accuracy threshold) on the first SCF cycle and either stored in core memory or written to disk until the
amount of storage requested has been exhausted. These integrals are then reused on subsequent SCF
iterations. All remaining integrals are recalculated as usual.

Note: In order to use semidirect integral storage, either CORE or DISK must be
specified, along with a corresponding storage value. In-core storage is specified in MW
and disk storage in MB. (DISK must be at least 100 MB or it will be ignored.) Specifying
SEMI on the SCF command line without a corresponding DISK/CORE specification on
the %MEM card will do semidirect on the DFT part of the calculation only.
Because of the huge disparity between CPU and I/O speed, semidirect calculations that
request a large amount of disk storage are nearly always slower than the corresponding
fully-direct calculation. (See the comments under the %MEM command regarding I/O
buffer size.)

Fourier Transform Coulomb (FTC)

PWAVe: Activates the Fourier Transform Coulomb (FTC) method, an alternative approach for eval-
uating a large part of the Coulomb term in closed-shell DFT calculations. Available for pure (i.e.,
non-hybrid) DFT functionals only. Cannot be used for Hartree-Fock calculations, only DFT.

This is a potentially useful feature currently available for pure (i.e., non-hybrid) DFT closed-shell cal-
culations of energies, gradients and geometry optimizations which can provide substantial savings in
computational time with essentially no loss in accuracy [40]. It involves computing a large part of the
Coulomb potential (and its derivative for the forces) using a plane wave expansion of (part of) the original
Gaussian basis set. The FTC method can be considered as being related to the so-called “resolution of
the identity” RI-DFT approach which expands the density in an auxiliary basis [41]. However, unlike the
situation in RI-DFT where the auxiliary basis is typically a set of Gaussian functions slightly larger than
the original basis set [42], in the FTC method it is an essentially infinite plane wave basis. This makes
FTC potentially much more accurate than RI-DFT. It also scales better with respect to both system and
basis size.
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The current implementation is only preliminary and does not realize the full potential of the method.
It is closed-shell only and does not make use of any symmetry that the system may have. For small
basis sets (STO-3G, 3-21G) it is slower than the traditional, all-integral algorithm, but as the system size
and (especially) basis set increase, so do the savings. With large basis sets containing multiple valence-
shell and polarization functions, savings of up to an order of magnitude or more over the conventional
calculation can be achieved. For small molecules, the FTC method requires a lot more memory than
the traditional all-integral algorithm, but for larger systems the additional memory requirement over the
traditional algorithm is small.

To access the FTC method, simply add the keyword PWAVe to the SCF command line, e.g., SCF

DFTP=OLYP PWAV.

Practical Aspects

In most cases the standard SCF procedure will converge to the ground state wavefunction. Sometimes,
e.g., if there are particular convergence problems or if high value level shifts have been used, convergence
may be to an excited state. It is always a good idea to check the final orbital energies; if the orbital
energy of the (supposed) LUMO is lower than that of the HOMO then it is virtually certain that you
have converged to an excited state. This can normally be rectified by restarting the calculation, swapping
the HOMO and LUMO. (See the GUESS options.)

Although the wrong orbital energy ordering is normally a clear sign of convergence to an excited state,
the correct energy ordering is unfortunately not a cast-iron guarantee that you have the ground state.
The only way to be sure is to do a stability check on the wavefunction. This capability is currently
unavailable in PQS but is under development and is planned for a future release.

Savings

Significant savings can result with judicious use of the semidirect and FTC options. For integral semidi-
rect, the maximum savings ensue when a large percentage of the total number of integrals can be stored.
This occurs for small and medium-sized systems. As the system and basis set size increase, savings
decrease. There is little point doing any integral storage for large systems. For DFT semidirect on the
other hand, savings tend to increase with increasing system size, so it is always worth specifying SEMI

with large DFT calculations, regardless of the functional type.

FTC is best used for medium and large systems with large basis sets. As the FTC part of the calcula-
tion does not use symmetry, maximum savings will occur with unsymmetrical molecules. With highly
symmetrical systems the gain from FTC may be offset by the current inability to utilize the molecular
symmetry. Because FTC calculations typically compute only a small percentage of the integrals that are
needed for a traditional all-integral calculation, the integral semidirect option can be utilized with effect
for larger systems when FTC is employed than otherwise.
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3.2.9 FORCe Command

Options: [THR1=<real>] [THR2=<real>] [LIMIts=<integer><integer>,<integer>]
[PRINt=<integer>]

The FORCe command calculates the forces (negative gradient) for all ab initio methods supported (HF,
DFT and MP2).

The FORCE module will automatically adapt to the algorithm used in the preceeding energy calculation.
For example, if FTC were used in the SCF step it will also be used when computing the gradient.

THR1=<real>: one-electron integral threshold in pH format, e.g. 12 means 1.0E-12. Default is 11,
i.e. 1.0E-11.

THR2=<real>: one-electron integral threshold in pH format. Default is 10, i.e. 1.0E-10.

LIMIts=<integer><integer>,<integer>: the integral blocking parameters limxmem, limblks and
limpair. See the comments to the INTE command.

PRINt=<integer>: print level (needed only for diagnostics).

Tip: Do NOT change the two-electron integral threshold here for an MP2 force.
The same threshold used in the MP2 energy step MUST be used in the force.

3.2.10 NUMHess Command

Options: [FDSTep=<real>] [PRINt=<integer>] [FILE=<string>]

Calculates the Hessian (second derivative) matrix numerically using central differences on the (analytical)
gradient. Analytical Hessians are now available for all Hartree-Fock and DFT wavefunctions, both closed-
and open-shell (unrestricted), and so the numerical code should only be needed for: (1) Semiempirical
wavefunctions; (2) MP2 wavefunctions; or (3) all wavefunctions when the COSMO solvation model is
switched on. It might still be advantageous to use the numerical code over the analytical for highly
symmetrical systems or if there are difficulties with the analytical code. It may also be advantageous
to compute the Hessian numerically for small systems with large basis sets where the FTC method has
been used. This extends to larger systems with high symmetry. (Although FTC cannot utilize symmetry,
the finite-difference steps typically produce geometries where much, if not all, of the symmetry is lost,
allowing FTC to be used with advantage.)

This is a loop command, requiring a terminating JUMP card. Typical usage would be:

NUMH
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GEOM NOORIENT PRINT=1

SCF LOCA=PIPEK

MP2

FORCE

JUMP

Tip: If the Hessian is being calculated numerically for a vibrational frequency analysis
on a floppy molecule both the integral and SCF thresholds should be tightened (see the
INTE and SCF keywords).

FDSTep=<real>: controls the finite-difference step (values in au). Recommended step sizes for
medium-sized molecules are 0.005 for HF and semiempirical wavefunctions and 0.02 for DFT. The default
if this keyword is not present is 0.02 au.

PRINt=<integer>: controls the amount of printout (larger integer - more printout).

FILE=<string>: reads in a list of atoms for which a partial Hessian will be computed, e.g., for a TS
search, calculating Hessian rows and columns for atoms in the “active site”. The first line in the file
should be a text-only title (it is ignored); thereafter atoms are listed by number (in the same order as in
the geometry input), maximum 10 per line (free format).

Tip: In a complex input, involving the calculation of several properties at the final
geometry, the NUMHess loop (typically followed by FREQ) should either be done
LAST or an additional GEOM card should be inserted to restore the geometry.

3.2.11 HESS Command

Options: [THR1=<real>] [THR2=<real>,<real>,<real>] [THREshold=<real>]
[ITERations=<integer>] [RESEt=<integer>] [GRID=<real>] [PRINt=<integer>]

Calculates the Hessian (second derivative) matrix analytically. Now available for Hartree-Fock and DFT
(all supported functionals) wavefunctions, both closed- and open-shell (unrestricted). The current version
is somewhat memory intensive, although more efficient than in some other programs.

THR1=<real>: one-electron integral threshold in pH format. Default is 10, i.e., 1.0E-10.

THR2=<real>,<real>,<real>: two-electron integral thresholds in pH format. The first is the threshold
for the direct contribution of the two-electron second derivatives; the second is for both the contribution
from two-electron first derivatives and the final integral threshold for the coupled perturbed Hartree-Fock
(CPHF); the third is the loose integral threshold for the CPHF. The defaults are 10, 9 and 8, respectively.
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THREshold=<real>: convergence threshold for the CPHF in pH format. Default is 5, i.e., 1.0E-5.

ITERations=<integer>: maximum number of iterations during the CPHF. Default is 30.

RESEt=<integer>: resets CPHF if convergence not achieved after reset iterations. Default is 20.

Note: The CPHF procedure normally converges fairly rapidly (usually in 10 or less
cycles). There is rarely any need to charge either ITER or RESEt from their default
values.

GRID=<real>: controls grid quality in DFT calculations. Similar to same keyword in the SCF
command. Bigger number, more grid points. The default is to use the same value as was used for the
corresponding SCF energy, but we have found on rare occasions (so far only with high symmetry) that it
is necessary to increase the grid quality beyond that of the SCF to achieve convergence. We would not
recommend setting GRID to less than the value used in the SCF.

PRINt=<integer>: print level (needed only for diagnostics).

Memory and Disk Requirements

Disk requirements are fairly modest, but memory demands can be high. The greatest memory demand
occurs during derivative Fock matrix construction and, especially, the CPHF step. Each symmetry-unique
atom requires storage for three derivative Fock matrices (corresponding to X, Y and Z perturbations);
additionally there are several other matrices of similar dimension in the CPHF step. Total storage during
the CPHF is about 3×3×NA× (N × (N +1))/2, where NA is the number of atoms and N is the number
of basis functions. With, say, 100 atoms and N=1000, this comes to well over 3 GB. The memory demand
can be reduced by doing multiple passes over the atoms, i.e., constructing derivative Fock matrices or
solving the CPHF equations for only as many atoms as can be comfortably accommodated in the available
memory. Perhaps surprisingly, multiple passes in the CPHF step usually have only a small effect on the
job time.

For parallel jobs, each slave needs as much memory as the master, so for very large jobs you may need
to reduce the number of processes running on a node. Note that the parallel efficiency in the CPHF,
although improved recently, is not great, and can fall off noticeably beyond 8 processors.

3.2.12 POLAr Command

The POLAr command computes the polarizability analytically, by solving the coupled-perturbed Hartree-
Fock equations. It is currently available for closed-shell Hartree-Fock wavefunctions only and consequently
is of limited use.
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3.2.13 NUMPolar Command

Options: [DIPD] [POLD] [FIELd=<real>] [PRINt=<integer>]

Calculates the polarizability tensor and (optionally) the dipole and polarizability derivatives. The latter
can be used to calculate Raman intensities during a standard vibrational analysis (via the

NUMPolar calculates its quantities numerically and is available for all supported wavefunctions. The
polarizability is determined by finite-difference on the energy in the presence of an external field; the
dipole and polarizability derivatives are determined by finite-difference on the gradient in the field. Note
that the field is automatically invoked by the NUMP command - there is no need to include the field
explicitly on the GEOM command line.

NUMP requires a numerical loop, including an energy (and a gradient if derivative quantities are re-
quired). In this, it is similar to the NUMH command for the numerical Hessian. However, unlike for
the Hessian, the number of finite-difference calculations is fixed regardless of the system size. For the
polarizability and dipole derivatives, six calculations are needed, with external fields applied along the X,
Y and Z axes, respectively. For polarizability derivatives, twelve calculations are needed, with additional
external fields along the X & Y, X & Z and Y & Z axes simultaneously. Polarizability derivatives are
second derivative quantities and their numerical calculation is consequently less accurate than for the
dipole derivatives. Tightening the various thresholds (on the integrals and SCF convergence) is often
required, especially for larger systems, to get reliable results.

Typical usage would be:

(i) for the polarizability alone

NUMP

GEOM NOORIENT PRINT=1

SCF THRE=6.0

JUMP

(ii) for dipole/polarizability derivatives

NUMP POLD

GEOM NOORIENT PRINT=1

SCF THRE=6.0

FORCE

JUMP

DIPD: calculate dipole derivatives.

POLD: calculate polarizability derivatives.

FIELd=<real>: applied field (default is 0.0005 au)

PRINt=<integer>: controls the amount of printout (larger integer - more printout).

If no additional options are specified, just the polarizability is calculated. At the end of the calculation
any derivative quantities computed will be found (as Cartesians) in the .deriv file. The polarizability
derivatives require the gradient at the initial geometry, and so a FORCe command should be ran before
starting the NUMP loop (see input example 17).
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Tip: In a complex input, involving the calculation of several properties at the final
geometry, the NUMP loop (typically followed by FREQ) should either be done LAST or
an additional GEOM card should be inserted after it to restore the geometry.

3.2.14 FREQ Command

Options: [TEMPerature=<real>[,<real>,<real>]] [PRESsure=<real>[,<real>,<real>]]
[PRINt=<integer>]

Calculates vibrational frequencies from an existing Hessian matrix (taken from the .hess file), infrared
(and possibly Raman) intensities using dipole moment and polarizability derivatives (taken from the
.deriv file), VCD rotational strengths, as well as thermodynamic parameters in the rigid rotor/harmonic
oscillator approximation.

TEMPerature=<temp>[,<tend>,<tstep>]: Temperature (degree Kelvin) for the thermodynamic anal-
ysis. If <tend> and <tstep> are specified, the thermodynamic quantities will be computed for all
temperatures in the range <temp>–<tend> using <tstep> as step size.

PRESsure=<pres>[,<pend>,<pstep>]: Pressure (Atm) for the thermodynamic analysis. If <pend>
and <pstep> are specified, the thermodynamic quantities will be computed for all pressures in the range
<pemp>–<pend> using <pstep> as step size.

PRINt=<integer>: Controls the amount of printout (larger integer - more printout).

Note: FREQ will carry out a frequency analysis on any Hessian matrix that is in the
.hess file, including the approximate Hessian left over from a geometry optimization. For
a reliable analysis, make sure that an exact Hessian is available (via HESS or NUMHess)
before the FREQ command line.

3.2.15 NMR Command

Options: [FOR=<integer>] [THR1=<real>] [THR2=<real>,<real>] [THREshold=<real>]
[ITERations=<integer>] [GAUGe=<integer>] [LIMIts=<integer>,<integer>,<integer>]
[LVSHift=<real>] [NOCPhf ] [MALKin=<string>] [VCD] [PRINt=<integer>] [HYDRogen]
[BOROn] [CARBon] [NITRogen] [OXYGen] [FLUOrine] [SODIum] [MAGNesium]
[ALUMinum] [SILIcon] [PHOSphorous] [SULFur] [CHLorine] [DUMMy]

This command calculates nuclear magnetic shieldings by the GIAO (Gauge-Including Atomic Orbital)
method [43, 44]. Available for HF and all supported DFT [45, 46] wavefunctions. Closed-Shell ONLY.
The PQS NMR module is very efficient, and the convergence of the coupled-perturbed Hartree-Fock step

62 PQS Manual



The PQS Style Input File

has recently been improved.

In most applications the defaults will work well and only NMR is needed.

FOR=<integer>: This option, if present, instructs the program to calculate NMR shieldings only for
the n-th nucleus where n is the integer. n must be between 1 and the total number of nuclei, otherwise
no shielding is calculated. The default is to calculate shieldings for all symmetry-unique nuclei. If several
nuclear shieldings need to be calculated, the NMR card must be repeated. This will not repeat the whole
calculation. Note that the savings obtained by calculating only a few nuclei are not great because most of
the work goes into calculating the first-order wavefunction, and this has to be done whether one or a 100
shieldings are calculated. An alternative way to specify the atoms for which magnetic shieldings must
be calculated is to list the name of the atom on the NMR card (see options HYDROgen to CHLOrine
and DUMMy below).

THR1=<real>: This is the neglect threshold for the one-electron GIAO integrals, in pH form, i.e., the
<real>=-log(threshold1). The default is 10 (threshold1=1.0E-10).

THR2=<real>,<real>: These are integral thresholds, thre2 and thre3, in the coupled-perturbed
Hartree-Fock program, in pH form (see above). Thre3 is used in the preliminary CPHF steps. The
default is currently 10 (i.e., 1.0E-10) for both.

THREshold=<real>: Required accuracy for the first-order density matrix in the Coupled-Perturbed
Hartree-Fock equations, in pH form. The default is 5, i.e., 1.0E-5.

ITERations=<integer>: Sets the maximum number of CPHF cycles. The default is 30 which is
normally adequate. If a calculation fails to converge in 30 cycles, it probably never will.

GAUGe=<integer>: The gauge origin will be the n-th atom if n is the integer.

PRINt=<integer>: Controls the amount of printout (larger integer - more printout).

LIMIts=<integer>,<integer>,<integer>: See INTE and FORCe for this option. It is usually not
required but may be necessary for high angular momentum functions (g,h,. . . ) and large basis sets.

LVSHift=<real>: This option specifies a level shift for the virtual orbitals. Using of an appropriate
level shift can dramatically improve the accuracy of calculated NMR shieldings [47]. The recommended
level shift [47] is 0.025 Eh for the BLYP, B3LYP, OLYP and O3LYP functionals.

Note: This option should not be confused with the use of a level shift to improve
SCF convergence.

NOCPhf : This logical option suppresses the solution of the coupled-perturbed Hartree-Fock (or Kohn-
Sham) equations. It is automatically invoked for the Wilson-Amos-Handy (WAH) functional, see [28].
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MALKin=<string>: This character option directs the program to perform the Malkin correction on
the orbital energies [48], in effect a variable level shift. Malkin et al. [48] calculate the level shift using
the simple Slater (HFS) functional [14] even if the DFT functional used is different. Our program allows
the specification of the functional to be used to calculate the level shifts. MALKin=HFS recovers the
original Malkin correction, while MALKin=B3LYP (in a B3LYP calculation) is more consistent, in
that the same functional is used to determine the exchange-correlation energy and the level shift (in this
case B3LYP). See [47].

VCD: Does the necessary calculations (of the atomic axial tensors) for the computation of VCD rota-
tional strengths.

Note: The actual calculation is in two parts, with the first part done in the NMR
module, and the second in the Hessian module. The final rotational strengths are eval-
uated and printed in the Frequency module.

HYDRogen, BOROn, CARBon, NITRogen, OXYGen, FLUOrine, SODIum, MAGNe-
sium, ALUMinum, SILIcon, PHOSphorous, SULFur, CHLorine, DUMMy: Calculate and
print magnetic shieldings only for the atom types listed on the NMR card. Specifying the atoms this way
is frequently simpler than using the FOR card.

Tip: The atoms listed above are the only ones included in the program. To calculate,
e.g. thallium magnetic shieldings, either use the FOR card, or simply calculate all
shieldings (no option cards).

Note: To convert the calculated NMR shieldings into (relative) chemical shifts
requires subtraction of the calculated shieldings from those of a standard. A larger
shielding results in a lower shift; if the shielding of the atom is larger than that of the
standard, the shift will be negative. For consistency, nuclear magnetic shieldings for the
standard should be computed at the same level of theory as the calculated shieldings.

3.2.16 Vibrational Circular Dichroism (VCD)

Allows the computation of VCD rotational strengths in chiral molecules. The implementation of this in
PQS is similar to that of Stephens and coworkers [49]. Strictly speaking, this is not a separate command,
but an option to the NMR command. However, it requires both an NMR and a Hessian calculation,
and they must be done in the correct order, with the NMR part first. Typical usage would be

NMR VCD

HESS
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FREQ

The actual rotational strengths are printed out as a part of the frequency analysis. See input example 37.

3.2.17 MP2 Command

Options: [MAXDisk=<real>] [NOFRozen] [THREshold=<real>] [CORE=<real>]
[ORBS=<integer>,<integer>] [SCS[=<real>,<real>]] [DUAL] [GRAD] [RESTart]
[PMIJ=<integer>] [PRINt=<integer>]

Calculates canonical second-order Møller-Plesset (MP2) correlation energies (also called second-order
Many-Body Perturbation Theory, MPPT(2)).

Note: Although canonical (not local) MP2 energies are calculated, there are effi-
ciency/accuracy advantages in localizing orbitals, and LOCA=PIPEK is now compul-
sory in the preceeding SCF step

MAXDisk=<real>: Maximum amount of scratch disk storage allowed (in GB); in parallel jobs the
maximum disk storage per process. The default value is 20 GB. The bulk of the disk storage is required
for the half-transformed integrals; if there is insufficient space to store all transformed integrals, the job
will crash. The second half-transformation step can be done in multiple passes and requires only a couple
of GB (maximum), although it may use more if this is available. If a calculation crashes in the sort phase,
the half-transformed integral file is not removed and the calculation can be restarted.

Disk storage required for the half-transformed integrals is given by S = 5N(N + 1)(n2 + 2)/2 where S is
the storage in bytes, N is the number of basis functions and n is the number of correlated orbitals. This
formula holds for non-symmetrical systems, for (Abelian) symmetry S should be divided approximately by
the number of symmetry operations, with the proviso that only symmetry operations that transform atoms
into different atoms count, e.g., for naphthalene (D2h) the molecular plane leaves all atoms stationary,
and thus the number of effective symmetry operations is 4 not 8. In a parallel job, disk storage is evenly
distributed across the nodes, so the storage calculated via the above formula should be divided by the
number of slaves.

Disk storage actually requested should account for the second half-transformation as well. Maximally,
this can be twice as much as that required for the half-transformed integrals, so — if available — you
should ask for twice the calculated value of S. Do not ask for more disk storage than is available
on your system. If you are limited by disk capacity, the second-half transformation can be carried out
(with multiple passes) in as little as 2-3 GB.

For example, consider C72, no symmetry, 6-311G* basis set. Here N=1332 and n=148 for a frozen-core
calculation. The disk storage needed for the half-transformed integrals is 97.2 GB. The recommended
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value for MAXDisk for a single-processor job is 200 and should be at least 100. Run in parallel on, say,
4 processors, these values can comfortably be reduced to 50 (recommended) and 27 (minimum).

Note: On a restart, MAXDisk refers only to the disk space needed for the second
half-transformation and hence can be set if necessary as low as a few GB.

Tip: Previous versions of the program limited individual files to 2 GB because many
Unix/Linux systems could not handle files larger than that. From PQS v.3.1 we switched
to large file handling and only one file will be open for both the half-transformed integrals
and the bins file during the second half-transformation. If your operating system does
not support large files, you should either upgrade or use previous versions of PQS (e.g.,
PQS v.3.0) to run large MP2 jobs.

NOFRozen: Core orbitals will also be correlated; the default is to correlate only the valence orbitals.

THREshold=<real>: Integral threshold in Ph form. E.g., THREsh=9 sets the integral threshold to
1.0E-9. The default threshold is set to the lower of 1.0E-10 or the square of the lowest eigenvalue of the
overlap matrix (which is calculated in the SCF step). The latter is a good measure of basis set stability
- too low a value and the basis has severe linear-dependency problems. The threshold has a double
effect. First, a lower threshold lowers the computational cost but also the accuracy. The threshold for a
single-point MP2 energy can normally be lower than for the SCF (but should not be reduced if an MP2
gradient is subsequently calculated). Regardless of the magnitude of the lowest eigenvalue, the threshold
will not be set lower than 1.0E-12 unless forced (not recommended). Half-transformed integrals are
stored in integer form, occupying 5 bytes of storage - if the threshold is set too low, large integrals may
overflow this storage. Formerly the calculation simply stopped, but we have now introduced an automatic
threshold reduction which reduces the threshold for any integrals which would otherwise overflow (albeit
with some potential for loss of accuracy in the final computed MP2 energy). Integral overflow is unlikely
to happen with the default threshold and the usual basis sets but very large basis sets, especially if they
contain diffuse functions, may cause this problem.

CORE=<real>: E.g., CORE=−2.7. Orbitals with energies lower than this value are considered to be
core orbitals and are not correlated. The default is −3.0 au.

ORBS=<istart>,<iend>: Correlate only orbitals between istart and iend (inclusive).

SCS[=<real>,<real>]: Spin-component scaled MP2. This was originally introduced by Grimme [50],
who considered separate scaling of the MP2 energy contributions from antiparallel-spin (αβ “singlet”)
and parallel-spin (αα, ββ “triplet”) electron pairs. Grimme’s final least-squares scaling factors were
6/5 for the “singlet” scaling and 1/3 for the “triplet”. A later paper from the Head-Gordon group [51]
— scaled opposite-spin (SOS) MP2 — eliminated the “triplet” contribution altogether, and scaled the
“singlet” contribution by 1.3.
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The two optional parameters to the SCS option are read-in scaling factors for the “singlet” and “triplet”
contributions, respectively. Specifying SCS alone, without any scaling factors, is equivalent to Grimme’s
original scaling. The Head-Gordon scaling can be accessed via SCS=1.3,0.0.

SCS scaling is also available in the MP2 gradient allowing for scaled MP2 geometry optimizations.

DUAL: Dual basis set calculation [52]. The idea here is that high angular momentum functions may
be needed to adequately describe electron correlation, but have little effect in the SCF. This allows one
to use a smaller basis for the SCF, and a larger one during the MP2 step.

First complete a small basis SCF calculation, then include in the input file

BASIS=<larger basis>

GUESS=READ

MP2 DUAL <other possible MP2 options>

Tip: The larger basis set must be an extension of the smaller. Note also that the
GUESS card is mandatory and there is no SCF between the GUESS and the MP2 cards.

GRAD: Forces the program to compute and store quantities needed for a subsequent MP2 gradient
calculation even if the FORCe keyword is not included in the input file. Normally for timing or diagnostic
purposes only.

RESTart: If this option is present, the program assumes that the half-transformation is finished, and
the half-transformed integrals are present on the file /PQS SCRDIR/<jobname>.htr and only the sorting
and second half-transformation are carried out.

PMIJ=<integer>: Print the exchange matrix for pair (integer). The orbital pairs are numbered as
Nij = i ∗ (i− 1)/2 + j i ≥ j. Diagnostic only.

PRINt=<integer>: Print level. Much output can be produced by using PRINt=3 or higher.

Degeneracy

The current implementation cannot handle, in general, symmetries with degenerate representations. Most
likely, an error message, “Orbitals do not conform to symmetry”, will appear. Two remedies are available:
(1) distort the system slightly (10−4 au) to break the symmetry, or switch off symmetry (with SYMM=0.0
on the GEOM card).
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Memory requirements

The greatest memory demand arises in the calculation of integrals. The program must be able to hold
all integrals (Mν|Lσ) where M and L are shells and ν, and σ are contracted basis functions. This adds
up to S2N2 where S is the largest shell size (5 for D’s, 7 for F’s etc. . . ), and N is the number of basis
functions. For large shells (e.g. G15 or H21) this is a considerable amount of memory. However, it
scales only quadratically with the number of basis functions. This memory ought to be real memory, and
the program must be told this, or else severe paging problems may occur. For calculations employing f
functions (S2=49), at least 400 MB fast memory is needed for N=1000, and at least 256 MB for N=800.
This is not especially restrictive but for larger shells (G15 etc. . . ) the problem becomes more severe. We
have recently modified the MP2 integral routines to alleviate this memory bottleneck, but it is still fairly
demanding.

For further details on the MP2 algorithm, both serial and parallel, see the published literature [53, 54].

MP2 Gradient

Analytical gradients are now available for closed-shell, canonical MP2 wavefunctions. The code is still
somewhat preliminary (for example there is no symmetry and it is serial only) but we have included
it because, despite its inefficiencies, it is still faster and can handle larger systems than in many other
programs.

Full details of the algorithm have been published [55] but from a practical point of view the memory
requirements are somewhat greater and disk requirements two-three times greater than for the corre-
sponding MP2 energy calculation. The time (elapsed) required to compute an MP2 gradient is typically
around three times longer than for the corresponding MP2 energy (summing times for both the SCF and
MP2 steps).

As far as PQS input is concerned, there is no specific MP2 gradient keyword, and the MP2 gradient is
computed as part of the FORCe keyword. A typical MP2 geometry optimization loop would be

OPTIM

SCF LOCA=PIPEK

MP2

FORCE

JUMP

with the program itself determining which wavefunction to compute the gradient for (HF or MP2) by
parsing the input file. See example 31 in the RUNNING JOBS section.
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3.2.18 POP Command

Options: POP[=<string>] [PTHRsh=<real>]

This command carries out population analysis on the wavefunction, computing and printing out atomic
charges, bond orders, atomic valencies, free valencies (for unrestricted wavefunctions) and (optionally)
gross orbital occupancies.

POP[=<string>]: Type of analysis requested. Should be one of

• MULLiken: Mulliken analysis.

• LOWdin: Löwdin analysis.

• CHELp: Charges from electrostatic potential.

• FULL: All three analyses, including gross orbital occupancies.

POP alone, without any defining string, does both Mulliken and Löwdin analyses without printing the
gross orbital occupancies.

PTHRsh=<real>: Threshold for printing the bond orders. Only bond orders of magnitude greater
than PTHRsh will be printed (default 0.01).

Population analysis is an attempt to interpret the wavefunction in terms of classical chemical concepts
such as bond order (single, double, triple bonds etc. . . ) and atomic valency. In open-shell systems, atoms
with a high free valency are presumably more “reactive” than atoms where the free valency is lower.

The essential quantity in a Mulliken analysis [56] is PS (density × overlap), whereas in a Löwdin anal-

ysis [57] it is the symmetrized equivalent S
1
2PS

1
2 . Use of these two quantities influences the analysis in

different ways. For example, gross orbital occupancies (gi) in a Löwdin analysis satisfy 0 ≤ gi≤2 for
closed-shell systems, which is just what we would expect, whereas for a Mulliken analysis this does not
necessarily hold and one can get unphysical negative occupancies. On the other hand, Löwdin bond
orders are always positive and hence do not allow for unfavorable (negative) interactions between atoms
in a molecule. Overall, the Löwdin analysis is more stable; the Mulliken analysis can be thrown way off
if there are diffuse functions in the basis set [58].

CHELP is now a fairly common procedure which involves computing the electrostatic potential on a grid
of points surrounding the molecule and deriving charges on the various atoms that best reproduce it.
There are various implementations, including some that also attempt to reproduce the dipole moment;
the version in PQS follows that of Singh and Kollman [59], as amended by Breneman and Wiberg [60] ,
and produces best-fit atomic charges.
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Note: If dipole derivatives are available on the .deriv file (from a numerical or
analytical Hessian calculation), then the population analysis of Cioslowski [61] is carried
out, which derives atomic charges from the trace of the dipole derivatives tensor. These
charges often appear to be chemically more “sensible” than those derived from the other
analyses.

3.2.19 NBO Command

This is the NBO program of Prof. Frank Weinhold (University of Wisconsin). PQS (optionally) includes
NBO version 5.0. The official NBO program manual is provided with the PQS documentation and should
be consulted for a full list of options, keywords and references. NBO 5.0 has a limitation of 200 atoms
and 2000 basis functions.

The NBO program performs an analysis of a many-electron molecular wavefunction in terms of localized
electron-pair bonding units. It can determine natural atomic orbitals (NAOs), natural hybrid orbitals
(NHOs), natural bond orbitals (NBOs), and natural localized molecular orbitals (NLMOs), and use these
to carry out a natural population analysis (NPA), an NBO energy analysis, and other localized analyses
of wavefunction properties, including natural resonance theory (NRT) analysis.

There are two methods for accessing NBO within a PQS run. For the basic NBO analysis, simply add
the keyword NBO after the SCF keyword. For additional NBO options, specify NBO as above, then
on the next line type $NBO followed by the desired NBO keyword(s), followed by $END. Then on the next
line type ENDNBO.

For example, to request a molecular dipole moment analysis in addition to the basic NBO analysis (using
the additional NBO keyword DIPOLE).

...

SCF

NBO

$NBO DIPOLE $END

ENDNBO

...

Note: The NBO keyword alone gives an NPA analysis by default. See input examples
8 and 10.
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3.2.20 PROPerty Command

Options: [SPIN] [EFG] [RADF=<real>] [LMAX=<integer>] [FACTor=<real>]
[PRINt=<integer>]

Computes selected properties at the nucleus for each atom in the system. Currently the charge and spin
(for open shell) densities and the electric field gradient are available for HF and DFT wavefunctions.

All properties are calculated numerically over atom-centered grids (similar to those used for DFT wave-
functions). There are two methods coded for computing the charge/spin density, the standard delta
function approach (which involves expectation values evaluated at the nucleus) and a Gaussian-weighted
operator originally developed by Rassolov and Chipman [62] for MCSCF wavefunctions and extended for
use with DFT wavefunctions [63]. The latter has a short effective range about the nucleus and samples
more of the wavefunction than does the delta function method; in this way it is hoped to reduce the basis
set dependence of the delta function method and compensate somewhat for the fact that Gaussian basis
functions do not have the correct asymptotic behavior near the nucleus.

SPIN: Calculates the charge and spin densities (for open shell). Both delta function (Fermi contact)
and Rassolov/Chipman densities will be computed.

EFG: Calculates the electric field gradient.

RADF=<real>: Sets the radial factor for the Rassolov-Chipman operator. Typical values are 0.1 to
0.5 (default 0.35).

LMAX=<integer>: Orbitals are expanded in spherical harmonics and LMAX sets the maximum
angular momentum value used in the expansion. The default is LMAX=4 which is normally perfectly
adequate. LMAX should be a positive integer between 0 and 17. Do NOT set LMAX greater than 17 as
the default angular grid used (with 110 angular points) cannot integrate beyond this value.

FACTor=<real>: Controls radial grid quality. Larger values, more radial grid points. Suggested values
are between 0.5 and 2.0 (default 1.0). See the SCF command.

PRINt=<integer>: Controls the amount of printout (larger integer - more printout).

3.2.21 COSMo Command

Options: [EPSI=<real>] [RSOL=<real>] [SOLV=<string>] [RADI=<string>] [OFF]
[ROUT=<real>] [DISE=<real>] [LCAV=<integer>] [NPPA=<integer>] [NSPA=<integer>]
[AMPR=<real>] [PHSR=<real>]

Requests a calculation using the Conductor-like Screening Model (COSMO) [64] to model the effect of
a solvent on the system under study. In this model the solute forms a cavity in a dielectric continuum
representing the solvent. The size of the cavity is defined by the solvent accessible surface (SAS), which is
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constructed on the basis of the molecular geometry. COSMO is available for energies, gradients and NMR
using Hartree-Fock, MP2 and DFT wavefunctions. (Second-derivatives are accessible via the NUMHess
command.) It is switched on by the presence of the COSMo keyword (and any associated options) in the
input deck (normally after the geometry and basis set have been defined). All subsequent SCF, FORCE
and NMR commands will be affected. It can be switched off by adding the line COSMo OFF later in
the input file. Note that COSMO performs best for polar solvents (large dielectric permittivity values)
and results for weak dielectrics are less reliable

The default settings of the COSMO module have been tailored for application of the COSMO-RS
(COSMO for real solvents) theory [65]. In particular, the COSMO module will produce a file (.cosmo)
that can be used as input to the COSMOtherm suite of programs for the calculation of solvation mix-
ture thermodynamics. The COSMOtherm package is distributed by COSMOlogic GmbH & Co.KG (web
site: http://www.cosmologic.de). The COSMO-RS parameters have been optimized for DFT calcula-
tions using the BVP86 functional and the svp ahlrichs and tzvp ahlrichs basis sets, thus the recom-
mended settings for running a COSMO-RS calculation are DFTP=BVP86 on the SCF command line, and
BASIS=svp ahlrichs or BASIS=tzvp ahlrichs as basis set choice.

Note: The heart of the COSMO code was kindly provided by COSMOlogic. Due to
technical limitations, gradients with COSMO switched on are not as numerically reliable
as normal non-COSMO gradients. Consequently, during geometry optimizations you may
see the energy rise slightly at the end of the optimization, i.e., the gradient “zero” is not
the true energy minimum. Such discrepancies are usually chemically insignificant.

EPSI=<real>: Electrical permittivity of the dielectric continuum. The default is infinity if no solvent
is specified, otherwise it is the value for the chosen solvent.

RSOL=<real>: Additional (atomic) radius (Å) for solvent accessible surface (SAS) construction. The
default is 1.3 Å if no solvent is specified, otherwise it is the value for the chosen solvent.

SOLV=<string>: Name of the solvent to be used. The default corresponds to the settings for a
COSMO-RS calculation (for which the SOLV keyword must not be present). Specifying the solvent will
set the values of EPSI and RSOL (see above) to predefined values for the chosen solvent, as listed in
Table 3.10. Solvents that are not listed in the table can be simulated by explicitly entering appropriate
values for RSOL and EPSI.

RADI=<string>: Type of atomic radii to be used for SAS construction. Should be one of

• BONDI: Use van der Waals radii from A. Bondi, J. Chem. Phys. 68 (1964) 441

• COSMO: Use the COSMO optimized radius if available, otherwise use 1.17× times the Bondi
radius. This is the default.
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Table 3.10: Predefined solvents of the PQS COSMO module

Solvent Alias(es) RSOL (Å) EPSI
water h2o 1.39 78.39
methanol ch3oh 1.86 32.63
ethanol c2h5oh, ch3ch2oh 2.18 24.55
acetone ch3coch3 2.38 20.70
ether ch3ch2och2ch3 2.79 4.34
acetonitrile ch3cn 2.16 36.64
nitromethane ch3no2 2.16 38.20
carbontetrachloride ccl4 2.69 2.23
chloroform chcl3 2.48 4.90
dichloromethane ch2cl2 2.27 8.93
dichloroethane ch2clch2cl 2.51 10.36
dimethylsulphoxide dmso 2.46 46.70
aniline c6h5nh2 2.80 6.89
benzene c6h6 2.63 2.25
toluene c6h5ch3 2.82 2.38
chlorobenzene c6h5cl 2.81 5.62
tetrahydrofuran thf 2.56 7.58
cyclohexane c6h12 2.82 2.02
n-heptane heptane, c7h16 3.13 1.92

Note: The internally defined Bondi atomic radii do not cover the entire periodic
table (although all of the commonly used elements are defined). If the program
encounters an atom for which an atomic radius is not defined, it will stop with an
error message. To proceed in such a case, the corresponding radius must be entered
as a user-defined value via one of the following methods

• USER: User-defined radii. These are read from one or more additional lines in the input file imme-
diately following theCOSMO command line. These additional lines must begin with the character
string$RADI followed by one or more occurrences of <symbol>=<radius>, where <symbol> is a
string identifying an atomic center (the use of numbers or special symbols to match the symbols
used in the geometry section is permitted) and <radius> is the corresponding atomic radius (Å).
Note that user-defined radii do not need to cover all the atomic centers in the system under study;
any atoms with undefined radii after parsing the user-defined input will be assigned the default
COSMO value.

• USERB: Same as USER above, except that every atom not defined will be given the Bondi radius.

• <filename>: If the string following the RADI keyword is not one of BONDI, COSMO, USER or
USERB, it will be assumed to indicate the name of a file containing the user-defined atomic radii.
The format of this user supplied file is the same as for USER (above), except that the initial $RADI
string may be omitted.

Some examples of input for user-defined atomic radii are given below:
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GEOM=PQS

O 0.000000 0.000000 -0.405840

H -0.793353 0.000000 0.202920

H 0.793353 0.000000 0.202920

COSMO RADI=USER

$radi h=1.5 o=1.8

will assign a radius of 1.5 Å to hydrogen and 1.8 Å to oxygen.

GEOM=PQS

O 0.000000 0.000000 -0.405840

H -0.793353 0.000000 0.202920

H 0.793353 0.000000 0.202920

COSMO RADI=USER

$radi h=1.5

will assign a radius of 1.5 Å to hydrogen leaving oxygen with the default (1.72 Å).

GEOM=PQS

O 0.000000 0.000000 -0.405840

H -0.793353 0.000000 0.202920

H$ 0.793353 0.000000 0.202920

COSMO RADI=USER

$radi h=1.5 o=1.8

$radi h$=1.3

will assign a radius of 1.5 Å to the first hydrogen, 1.8 Å to oxygen and 1.3 Å to the second hydrogen.

OFF: Turns off COSMO for all subsequent steps. This is useful if you wish to do several calculations,
with and without COSMO, in the same input file. (See input example 33.)

The following options are for fine tuning and are meant for advanced users

ROUT=<real>: Factor for outer sphere construction (default 0.85). The outer sphere is used for the
outlying charge correction.

DISE=<real>: Cutoff for use of basis grid points during SAS construction (default 10.0).

LCAV=<integer>: Type of cavity 0=open; 1=closed (default).

NPPA=<integer>: Total number of basis grid points per atom (default 1082)

NSPA=<integer>: Number of segments for non-hydrogen atoms (default 92).
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AMPR=<real>: Amplitude factor for coordinate randomization during SAS construction. Should be
0.00001 (default) or smaller.

PHSR=<real>: Phase offset for coordinate randomization (default 0.0).

3.2.22 SEMI Command

Options: SEMI[=<string>] [ETHR=<real>] [DTHR=<real>] [LVSHift=<real>] [DIIS=<real>]
[ITER=<integer>] [NOGUess] [PRINt=<integer>]

Semiempirical theories of various types have been around since the early days of quantum chemistry. One
of the first (and simplest) is Hückel theory [66] which, at the time, was very successful in predicting the
relative energy levels of the π orbitals in aromatic hydrocarbons. Modern semiempirical methods share
most of the concepts underlying the more rigorous ab initio theories, such as atomic orbitals and their
linear combination to form molecular orbitals, but they usually consider only orbitals in the valence shell
(typically assigning one s and one p valence AO to each atom, except hydrogen which gets only an s
orbital). Only the most important integrals are computed, with the effects of the “missing” integrals
and the atomic “core” being parameterized using upwards of a dozen adjustable parameters along with
a number of atomic constants for each element. These parameters are fit by attempting to reproduce
well-defined experimental (and sometimes ab initio) data.

A common family of semiempirical methods are the various NDO approximations introduced by Pople
and coworkers [67]. The first of these was CNDO (“complete neglect of differential overlap”) [68] followed
by INDO (“intermediate neglect of differential overlap”) [69] and then MINDO/1 (“modified interme-
diate neglect of differential overlap, version 1”) [70]. There is also Zerner’s ZINDO [71], which was
parameterized to reproduce excitation energies from UV spectroscopy.

The man most associated with the semiempirical methods in common use today is Michael Dewar.
His scientific autobiography “A Semiempirical Life” is available as an ACS monograph [72]. The PQS
semiempirical module has four semiempirical methods available; Dewar was directly involved in developing
three of them, MINDO/3 [73], MNDO [74] and AM1 [75], and indirectly involved in the fourth, PM3 [76].
The first two are continuations of the NDO approximation; AM1 is a more refined theory, with more
adjustable parameters and somewhat fewer approximations. PM3 is a continuation of AM1, with a
modified scheme for parameter fitting and a larger set of experimental values involved in the fit. For
more details see the original literature.

The best of the four methods overall is probably PM3, which has also been parameterized for many more
elements than the other three methods. Because of the limitation of just an s and a p orbital in the
valence shell, semiempirical methods can in general only be used for main group elements. Recently,
Thiel has included d-orbitals and has parameterized the first-row transition metals within a MNDO
approximation [77] (this is currently unavailable in PQS).

Atoms that have been parameterized for the various semiempirical wavefunctions are listed on Table 3.11.
As can be seen, PM3 is available for all main group elements through the fourth row, except for the rare
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Table 3.11: Parameterized atoms for the semiempirical methods implemented in PQS.

Atom PM3 AM1 MNDO MINDO Atom PM3 AM1 MNDO MINDO
1 H Y Y Y Y 20 Ca Y - - -
3 Li Y - Y - 30 Zn Y Y Y -
4 Be Y Y Y - 31 Ga Y - - -
5 B Y Y Y Y 32 Ge Y Y Y -
6 C Y Y Y Y 33 As Y - - -
7 N Y Y Y Y 34 Se Y - - -
8 O Y Y Y Y 35 Br Y Y Y -
9 F Y Y Y Y 37 Rb Y - - -

11 Na Y - - - 38 Sr Y - - -
12 Mg Y - - - 48 Cd Y - - -
13 Al Y Y Y - 49 In Y - - -
14 Si Y Y Y Y 50 Sn Y Y Y -
15 P Y Y Y Y 51 Sb Y - - -
16 S Y Y Y Y 52 Te Y - - -
17 Cl Y Y Y Y 53 I Y Y Y -
19 K Y - - -

gases. Also included are the formal transition metals, Zinc and Cadmium. (These metals have completely
filled d-shells, with a doubly occupied 4s shell; chemically they have much in common with the alkaline
earths.) AM1 is parameterized for the same set of elements as MNDO, except for Lithium which is
unavailable. MINDO/3 is only available for selected first and second row elements.

The semiempirical module in PQS calculates both energies and gradients for both closed and open-shell
(unrestricted) wavefunctions.

SEMI[=<string>]: SEMI may be optionally followed by an equal sign and a Semiempirical method.
(One of PM3, AM1, MNDO or MINDO, see above). The default if no method is given is PM3

Most of the other options control the SCF step and are similar to those in the main ab initio SCF module,
although in several instances they have been implemented differently.

ETHR=<real>: Convergence criterion on the energy change in Ph form (default is 10−9).

Note: Internally energies in the semiempirical module are heats of formation in
Kcal/mol; they are converted into atomic units on the .control file.

DTHR=<real>: Convergence criterion on the maximum difference in the density matrix (compared
element by element) in Ph form. The default is 10−5, but typical values obtained in practice are much
less than this due to the tight energy criterion.

LVSHift=<real>: Artificially shifts the energies of the virtual orbitals to help convergence (see the
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SCF command). The default value is zero, i.e., no level shift. If you experience convergence problems,
try increasing the value to, say, 4.0. Larger level shifts slow down the SCF convergence rate but should,
at least in theory, guarantee convergence.

DIIS=<real>: Criterion for switching on DIIS (see the SCF command) which will not be utilized until
the maximum difference in the density matrix between SCF cycles is less than this value (default 0.1).

ITER=<integer>: Maximum number of SCF cycles (default is 200).

NOGUess: The default during a semiempirical geometry optimization is to use the converged orbitals
from the previous geometry as starting orbitals for the next SCF; if this option is specified, the SCF
will start with a new guess every time. Should rarely be used except for QM/MM calculations. (See
RUNNING JOBS, example 26.)

PRINt=<integer>: Controls the amount of printout (larger integer - more printout).

Because SEMI automatically includes calculation of the gradient, there is no need to include a FORCE
command in an optimization loop, which typically would be

OPTIM

SEMI

JUMP

Tip: Prior semiempirical calculations are often useful as an aid to ab initio calcu-
lations, for example to preoptimize a molecular geometry prior to starting an ab initio
optimization or for calculating a cheap starting Hessian. (See input example 5).

3.2.23 FFLD Command

Options: FFLD[=<string>] [CUTOff=<real>] [FILE=<string>] [HESS] [PREOpt]
[PRINt=<integer>]

Calculates energies, gradients and (optionally) the Hessian matrix using a molecular mechanics force field.
This is a preliminary module for a number of different mechanics force fields that we plan to introduce.
The existing module is included mainly as an aid to ab initio calculations on larger organic systems, for
example to preoptimize a molecular geometry prior to starting an ab initio optimization or for calculating
a cheap starting Hessian.

Note: Mechanics force fields cannot, in general, be used as an aid to locating
transition states.
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FFLD[=<string>]: FFLD may be optionally followed by an equal sign and a force field type. Currently
two forcefields are available: Sybyl 5.2 [78] and UFF (universal force field) [79]. The default, if no force
field is selected, is Sybyl 5.2.

CUTOff=<real>: Ignores the van der Waals term in the force field for all interatomic distances greater
than the cutoff value given (in Å). If no value is given, a default of 10 Å is used.

FILE=<string>: Where <string> is the name of a file containing user-defined atomic connectivities
and Sybyl/UFF bonding types (see later).

Tip: If the file name contains spaces (frequent on Windows systems), it must be
surrounded by quote characters (either single ’, or double " quotes).
E.g. FFLD=SYBYL 5.2 FILE="molecule 1.ffld".

HESS: Calculate the Hessian matrix at the current geometry by finite-difference on analytical gradients.

PREOpt: Starting from the current geometry, take a few steepest descent steps to lower the energy
and hopefully get a more reasonable starting structure prior to a full ab initio optimization.

Note: This preoptimization is done entirely within the force field module and not
as a part of the optimization step.

PRINt=<integer>: Controls the amount of printout (large integer - more output).

The Sybyl 5.2 Force Field

This is a fairly basic force field containing the following terms:

1. Bond Stretching

Es =
1

2
Cs (R−R0)

2

where R0 is an “equilibrium” bond length and Cs is a scaling parameter for each defined bond type;
if no parameters are known R0 is taken as the initial bond length, R, and Cs=600.

2. Non-Bonded van der Waals interaction (1,3 and H-bonds excluded)

Ev = Cv

 1(
R
Rv

)12 −
2(
R
Rv

)6
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Table 3.12: Standard Sybyl atom types and their numerical values.

Value Symbol Type Value Symbol Type
1 C.3 carbon sp3 17 I iodine
2 C.2 carbon sp2 18 S.2 sulphur sp2
3 C.ar carbon aromatic 19 N.pl3 nitrogen trigonal planar
4 C.1 carbon sp 20 LP lone pair (REDUNDANT )
5 N.3 nitrogen sp3 21 Na sodium
6 N.2 nitrogen sp2 22 K potassium
7 N.1 nitrogen sp 23 Ca calcium
8 O.3 oxygen sp3 24 Li lithium
9 O.2 oxygen sp2 25 Al aluminum
10 S.3 sulphur sp3 26 Du dummy atom (REDUNDANT )
11 N.ar nitrogen aromatic 27 Si silicon
12 P.3 phosphorus sp3 28 N.am nitrogen amide
13 H hydrogen 29 S.O sulphoxide sulphur
14 Br bromine 30 S.O2 sulphone sulphur
15 Cl chlorine 31 N.4 nitrogen sp3 positive charge
16 F fluorine 32 unknown atom type

where Rv is the sum of the van der Waals radii for the two atoms and Cv is a scaling parameter
taken as the square root of the product of the hardness parameters for each atom; if no hardness
parameters are known Cv=1.

3. Bending

Eb =
1

2
Cb (Θ−Θ0)

2

where Θ0 is an “equilibrium” bond angle and Cb is a scaling parameter for each defined bond angle;
if no parameters are known Θ0 is taken as the initial bond angle, Θ, and Cb=0.02.

4. Torsion

Et =
1

2
Ct

[
1 +

s

|s| cos(|s|φ)

]

where Ct is a scaling parameters for each torsion φ and s is a small integer depending on the bond
type; if no parameters are known for the two central atoms of the torsion then s=3 and Ct=0.2.

5. Out-of-Plane Bend

Ep =
1

2
Cpd

2

where d is the distance from the central atom to the plane defined by its three attached atoms and
Cp is a scaling parameter. Only well-defined atom types have an out-of-plane bend contribution.
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Table 3.13: Standard Sybyl bond types.

Value Type
1 single bond
2 double bond
3 triple bond
4 amide bond
5 aromatic bond

The Sybyl 5.2 force field was coded from an old Sybyl theory manual and directly from the original
reference [78], both from 1989. As with many other mechanics force fields, carbon, nitrogen and a few
other atoms that are in different bonding environments within a molecule are considered as being different
atom types as far as the Sybyl force field is concerned, and each atom type has its own specific parameters.

Force field parameters are defined only for the atom types listed (see Tables 3.12 and 3.13), although
van der Waals radii are defined for all atoms up to and including Xenon. There are defaults for most
parameters, so the force field can be used even for molecules for which it was not originally defined. In
these cases, “equilibrium” bond lengths and angles will be assumed to have values as calculated from the
original input geometry. Side effects of this assumption are: (1) slightly different starting structures for
the same system will optimize to different final geometries; and (2) if optimized structures are reoptimized,
they will again change.

The UFF Force Field

This is a general force field covering the entire periodic table. Unlike many other forcefields (e.g., the
Sybyl force field as discussed above), UFF parameters are estimated using general rules based on the
element only. It contains the following terms:

1. Bond Stretching

Es =
1

2
Kij (RRij)

2

where R is the current interatomic distance in angstroms, Rij is the sum of standard radii for atoms
i and j, plus a bond-order correction plus an electronegativity correction, and Kij is a stretching
force constant.

Rij = Ri + RjRboRen

where Rbo = 0.1332(Ri + Rj) log(n) (n=bond order, C-N amide bond order is 1.41; bond order in
aromatic rings is 1.5) and

Ren = 2RiRj

√
Xi −

√
Xj

(XiRi + XjRj)
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Table 3.14: Standard UFF atom types and their numerical values.a

Value Symbol Type Value Symbol Type
1 H normal hydrogen 33 S R sulphur aromatic
2 H b bridging hydrogen 34 S 2 sulphur sp2
3 He4+4 helium (square-planar) 35 Cl chlorine
4 Li lithium 36 Ar4+4 argon (square-planar)
5 Be3+2 beryllium sp3 37 K potassium
6 B 3 boron sp3 38 Ca6+2 calcium (octahedral)
7 B 2 boron sp2 39 Sc3+3 scandium (tetrahedral)
8 C 3 carbon sp3 40 Ti3+4 titanium (tetrahedral)
9 C R carbon aromatic 41 Ti6+4 titanium (octahedral)
10 C 2 carbon sp2 42 V 3+5 vanadium (tetrahedral)
11 C 1 carbon sp 43 Cr6+3 chromium (octahedral)
12 N 3 nitrogen sp3 44 Mn6+2 manganese (octahedral)
13 N R nitrogen aromatic 45 Fe3+2 iron (tetrahedral)
14 N 2 nitrogen sp2 46 Fe6+2 iron (octahedral)
15 N 1 nitrogen sp 47 Co6+3 cobalt (octahedral)
16 O 3 oxygen sp3 48 Ni4+2 nickel (square-planar)
17 O 3 z oxygen in zeolites 49 Cu3+1 copper (tetrahedral)
18 O R oxygen aromatic 50 Zn3+2 zinc (tetrahedral)
19 O 2 oxygen sp2 51 Ga3+3 gallium (tetrahedral)
20 O 1 oxygen sp 52 Ge3 germanium (tetrahedral)
21 F fluorine 53 As3+3 arsenic
22 Ne4+4 neon (square-planar) 54 Se3+2 selenium
23 Na sodium 55 Br bromine
24 Mg3+2 magnesium sp3 56 Kr4+4 krypton (square-planar)
25 Al3 aluminum sp3 57 Rb rubidium
26 Si3 silicon sp3 58 Sr6+2 strontium (octahedral)
27 P 3+3 phosphorus 59 Y 3+3 yttrium (tetrahedral)
28 P 3+5 phosphorus sp3 60 Zr3+4 zirconium (tetrahedral)
29 P 3+q 4-coordinate phosphorus in phosphines 61 Nb3+5 niobium (tetrahedral)
30 S 3+2 normal divalent sulphur 62 Mo6+6 molybdenum (octahedral)
31 S 3+4 sulphur in e.g. SO2 63 Mo3+6 molybdenum (tetrahedral)
32 S 3+6 sulphur sp3 64 Tc6+5 technetium (octahedral)

aThe value after the “+” sign indicates the formal oxidation state.

(Xi is the GMP electronegativity of atom i) The stretching force constants are atom-based and are
obtained from a generalization of Badgers rules. They are given by Kij = 664.12(ZiZj)/R

3
ij (Zi, Zj

are effective atomic charges).

2. Non-Bonded van der Waals interaction (1,3 interactions excluded)

Ev = Dij

[(
Xij

X

)12

− 2
(

Xij

X

)6
]

where Dij is the well depth Dij =
√

DiDj (Di, Dj are individual atom parameters), Xij is the van
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Table 3.15: Standard UFF atom types and their numerical values (continued from Table 3.14)a.

Value Symbol Type Value Symbol Type
65 Ru6+2 ruthenium (octahedral) 97 Re6+5 rhenium (octahedral)
66 Rh6+3 rhodium (octahedral) 98 Re3+7 rhenium (tetrahedral)
67 Pd4+2 palladium (square-planar) 99 Os6+6 osmium (octahedral)
68 Ag1+1 silver (linear) 100 Ir6+3 iridium (octahedral)
69 Cd3+2 cadmium (tetrahedral) 101 Pt4+2 platinum (square-planar)
70 In3+3 indium (tetrahedral) 102 Au4+3 gold (square-planar)
71 Sn3 tin (tetrahedral) 103 Hg1+3 mercury (linear)
72 Sb3+3 antimony 104 Tl3+3 thallium sp2
73 Te3+2 tellurium 105 Pb3 lead sp3
74 I iodine 106 Bi3+3 bismuth
75 Xe4+4 xenon (square-planar) 107 Po3+2 polonium
76 Cs cesium 108 At astatine
77 Ba6+2 barium (octahedral) 109 Rn4+4 radon (square-planar)
78 La3+3 lanthanum (tetrahedral) 110 Fr francium
78 Ce6+3 cerium (octahedral) 111 Ra6+2 radium (octahedral)
79 Pr6+3 praseodymium (octahedral) 112 Ac6+3 actinium (octahedral)
80 Nd6+3 neodymium (octahedral) 113 Th6+4 thorium (octahedral)
81 Pm6+3 promethium (octahedral) 114 Pa6+4 protactinium (octahedral)
82 Sm6+3 samarium (octahedral) 115 U 6+4 uranium (octahedral)
83 Eu6+3 europium (octahedral) 116 Np6+4 neptunium (octahedral)
84 Gd6+3 gadolinium (octahedral) 117 Pu6+4 plutonium (octahedral)
85 Tb6+3 terbium (octahedral) 118 Am6+4 americium (octahedral)
86 Dy6+3 dysprosium (octahedral) 119 Cm6+3 curium (octahedral)
87 Ho6+3 holmium (octahedral) 120 Bk6+3 berkelium (octahedral)
88 Er6+3 erbium (octahedral) 121 Cf6+3 californium (octahedral)
89 Tm6+3 thulium (octahedral) 122 Es6+3 einsteinium (octahedral)
90 Yb6+3 ytterbium (octahedral) 123 Fm6+3 fermium (octahedral)
91 Lu6+3 lutetium (octahedral) 124 Md6+3 mendelevium (octahedral)
92 Hf3+4 hafnium (tetrahedral) 125 No6+3 nobelium (octahedral)
93 Ta3+5 tantalum (tetrahedral) 126 Lr6+3 lawrencium (octahedral)
94 W 6+6 tungsten (octahedral)
95 W 3+4 tetravalent tungsten (tetrahedral)
96 W 3+6 hexavalent tungsten (tetrahedral)

aThe value after the “+” sign indicates the formal oxidation state.

der Waals bond length Xij =
√

XiXj (Xi, Xj are individual atom parameters), and X is the actual
distance between atoms i and j.

3. Bending

(a) general nonlinear bend

Eb = Kijk [C0 + C1 + C2 cos(2Θ)]
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Θ is the current bond angle and Kijk is the bending force constant between atoms i, j and k.
The three expansion coefficients are given by C2 = 1/(4 sin2(Θ0)), C1 = −4C2 cos(Θ0), C0 =
C2(2 cos2(Θ0)− 1), where Θ0 is the idealized equilibrium angle at the central atom (j).

(b) linear, trigonal-planar, square-planar and octahedral

Eb =
(

Kijk

n2

)
[1− L cos(nΘ)]

(linear: n=1, L=−1; trigonal-planar: n=3, L=1; square planar/octahedral: n=4, L=1)

The bending force constants in both cases are given by

Kijk =
664.12

RijRjk

ZiZk

R5
ik

RijRjk

[
3RijRjk

(
1− cos2(Θ0)

)
−Rik cos(Θ0)

]
.

4. Torsion

Et =
1

2
V [1− cos(nΦ0) cos(nΦ)]

V is the torsional barrier and Φ0 is the idealized dihedral angle. Specific general cases include (j-k
is the central bond of the torsion):

(a) j=sp3 hybridized center; k=sp3 hybridized center where n=3 and Φ0=180◦ (or 60◦) and V =√
VjVk, with Vj, Vk being an individual main group atom value (non main-group elements are

assigned V =0). The torsional terms for pairs of sp3 hybridized group 6 central atoms are exceptions:
Here Vj=2 for oxygen and Vj=6.8 for the remaining group 6 elements, with n=2 and Φ0=90◦.

(b) j=sp2 hybridized center; k=sp3 hybridized center where n=6, Φ0=0◦ and V =1.0 For a single
bond involving an sp3 hybridized group 6 central atom and an sp2 atom of another column, V is
defined as in (c), below, with n=2 and Φ0=90◦. For a single bond where the sp2 hybridized center
in (b) is connected to another sp2 hybridized center (e.g., propene) then n=3, Φ0=180◦ and V =2.0.

(c) j=sp2 hybridized center, k=sp2 hybridized center where n=2, Φ0=180◦ and

V = 5
√

UjUk [1 + 4.18 log(Bij)] .

Bij is the bond order between i and j (Uj constants take values 2.0, 1.25, 0.7, 0.2 and 0.1 for the
second through the sixth period / first through the fifth rows of the periodic table).

5. Inversion

Ep = Kijkl [C0 + C1 cos(Yijkl) + C2cos(2Yijkl)]

This term applies to exactly 3 atoms (j,k,l) bonded to a central atom (i) Yijkl is the angle between
the il axis and the ijk plane. Central atoms for which an inversion term is defined are: C, N, P, As,
Sb, Bi. The inversion force constants (Kijkl) for all other atoms are set to zero. For sp2 hybridized
and aromatic carbon atoms: C0=1.0, C1=-1.0, C2=0.0. If carbon is bonded to sp2 hybridized
oxygen Kijkl=50.0, otherwise Kijkl=6.0.
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The UFF force field was coded directly from the original reference [79]. PQS also thanks Dr. Marcus
G. Martin, Sandia Laboratories, for supplying unpublished electronegativity parameters from his UFF
implementation in the Towhee molecular mechanics package.

There are a number of typos in the original paper. Several of these are corrected in the web page document
http:/towhee.sourceforge.net/forcefields/uff.html. In particular, the expression for the angle bend force
constants (eq. 13 in the original paper [79]) is obviously incorrect. However, there are other mistakes,
including the expression for the angle bend energy for linear systems (eq. 10) which has a sign error. The
implementation in PQS corrects all known errors.

As befits a forcefield that covers the entire periodic table (up to Lawrencium, element 103), UFF has
many more atom types than Sybyl, which is principally an organic forcefield. As with Sybyl, several
atoms have more than one atom type, depending on the bonding, and in total there are 126 different
atom types recognized by UFF. A complete listing, taken from Table 1 in ref. [79], is given in Tables 3.14
and 3.15. The five standard bond types (single, double, triple, amide and aromatic) covered in the Sybyl
forcefield (Table 3.13) transfer over to UFF as well.

Unlike Sybyl, there is no allowance in UFF for unrecognized atom types, and so certain compounds simply
cannot be treated with UFF. For example, although all elements are covered, many metals must have a
well-defined coordination (usually octahedral) or they will either not be properly recognized or distort
significantly if a geometry optimization is attempted. In particular, UFF simply does not recognize a
trigonal bipyramidal configuration around a central atom. On a more positive note, UFF is one of the
few, general force fields that can treat organometallic systems at all – just don’t expect perfection.

Tip: When the force field module is first invoked it will try, based on the input
geometry, to define the atomic connectivity and the Sybyl/UFF bond types. It will then,
based on this data, assign the atom types. The actual force field parameters that will
be used for your system can be printed out by setting the print flag to 4 or higher.
These preliminary parameters can be overridden by reading in predefined data in a given
file using the FILE option. The first line in the file should be a title line with user
comments (it is not read by the program) followed by one or more lines containing
bonding data: atom I atom J bond type (free format), all integers. This shows that
atoms I and J are bonded and gives the (integer) bond type. There should be no blank
lines anywhere in the file.

3.2.24 OPTImize Command

Options: [COORd=<string>] [REGEnerate=<string>] [CUTOff=<real>] [TYPE=<string>]
[MODE=<integer>] [GDIIs[=<integer>]] [DMAX=<real>] [GTOL=<real>] [DTOL=<real>]
[ETOL=<real>] [STOL=<real>] [HESS=<string>] [UPDAte=<string>] [PROJect=<string>]
[TRAN] [OPTCycle=<integer>] [CTOL=<real>] [LINEar=<real>] [BACK=<string>]
[NOTOrs] [SCAL=<real>] [HCNVrt] [QMMM] [PRINt=<integer>] [FILE=<string>]
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This is a loop command, requiring a terminating JUMP card. Typical usage would be:

OPTIM

SCF

FORCE

JUMP

PQS contains a powerful suite of algorithms for geometry optimization, referred to collectively as OP-
TIMIZE. Capabilities include optimization of minima and transition states, optimization in Cartesian,
Z-matrix and delocalized internal coordinates, and optimization with a wide range of constraints includ-
ing constrained interatomic distances, angles, torsions and out-of-plane bends, and frozen (fixed) atoms.
Note that desired constraints do not need to be satisfied in the starting geometry.

The main factors that affect the efficiency of a geometry optimization are: (1) the initial guess geometry;
(2) the optimization algorithm; (3) the quality of the initial starting Hessian; and (4) the coordinates
used to describe the system. Perhaps surprisingly, most of the advances in geometry optimization in
recent years have come, not from any major improvements in the algorithms used, but rather from a
better choice of coordinates. A good set of coordinates should ideally be decoupled to the maximum
extent possible so that changes in the value of one coordinate should have a minimal impact on the other
coordinates. Nearly all modern optimization algorithms use the Hessian matrix (the second derivative of
the energy with respect to coordinate displacements), or a suitable approximation to it, to help calculate
the next step, and the Hessian is easier to estimate (and to improve) if the coordinates are decoupled as
off-diagonal matrix elements are small and can often be ignored.

The default coordinates used by OPTIMIZE are delocalized internals [80]. These are automatically
generated from input Cartesian coordinates using a simple algorithm based on the atomic connectivity.
Delocalized internals combine features from both natural internal coordinates [81] and redundant internal
coordinates [82], introduced earlier by Pulay and coworkers, and reduce both harmonic and anharmonic
coupling between coordinates to the maximum extent possible on a purely geometric basis. Geomet-
ric constraints (including fixed atoms) can be imposed by a very powerful Schmidt-Orthogonalization
procedure [80], and this has been extended to include constraints that are not satisfied in the starting
geometry [83] using a Lagrange-Multiplier algorithm originally developed for Cartesian coordinates [84].
Special delocalized cluster coordinates have also been developed for the efficient optimization of molecular
clusters [85] and for adsorption/reaction on model surfaces.

The standard optimization algorithm in OPTIMIZE is the Eigenvector Following (EF) algorithm [86].
This can locate both minima and transition states, and is capable of taking corrective action if the system
is in the wrong region of the potential energy surface appropriate to the stationary point being sought
(i.e., if the current estimate of the Hessian matrix has the wrong eigenvalue structure). Another option,
which has been coded for minimization only, is GDIIS [87].

COORd=<string>: Coordinate system used to carry out optimization. It can be one of

• cart Cartesian coordinates
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• deloc/int delocalized internal coordinates

• zmat z-matrix coordinates

• surface surface adsorption/reaction

• cluster cluster coordinates (includes inverse-distance)

the default (if the COORd keyword is absent) is to use delocalized internals with automatic switch to
Cartesians if there are any problems (e.g., with the back-transformation).

Tip: For optimizing the structures of single molecules delocalized internals are
the coordinates of choice. For optimizing molecular clusters (containing two or more
weakly interacting molecules) use coord=cluster, while for a molecular system being ad-
sorbed/reacting on a model surface, you should specify coord=surface. In these two
latter cases, the individual molecules in the cluster or the surface/molecule interface
should be separated in the geometry input by $molecule (see GEOMetry command).
For a surface/molecule system, the surface coordinates should be given first.

Note: If a given coordinate system is specified there is NO automatic switch to
Cartesians if problems are encountered. For a z-matrix optimization, the geometry MUST
be given in z-matrix form AND “coord=zmat” MUST be specified.

REGEnerate=<string>: Regenerate “best” set of delocalized internal coordinates on each optimiza-
tion cycle. There are two options, regenerate just the delocalized internals using the same set of un-
derlying primitives or regenerate both the internal coordinates and the underlying primitives (specify
REGEnerate=all). The latter is recommended for cluster optimizations with a specific cutoff.

The default is to generate delocalized internals on first cycle ONLY and use these throughout the opti-
mization.

Note: In single-molecule optimizations, use of this option does not usually gain and
is NOT RECOMMENDED.

CUTOff=<real>: Distance cutoff for bonding in surface/cluster optimizations (in Å). The default is
5 Å for cluster optimizations and 3 Å for surfaces.

TYPE=<string>: Type of stationary point sought:

• min search for a minimum (default)

• ts search for a transition state.
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MODE=<integer>: Which Hessian mode (eigenvector) to follow (i.e., to maximize along) during a
transition state search The default is to follow (maximize along) the lowest Hessian mode.

Note: The number entered here must be greater than 0 and NOT greater than the
total number of Hessian modes (degrees of freedom). Following different Hessian modes
from the same starting point can lead to different transition states.

GDIIs[=<integer>]: Use the Pulay Geometry DIIS algorithm instead of the default Eigenvector Follow-
ing (EF) algorithm. The option can be optionally followed by an integer number specifying the maximum
allowed size of the iterative subspace. Specifying GDIIs alone will give a default subspace size depending
on system size (typical values are around 4).

Tip: Do not set N too large. GDIIS can ONLY be used for minimization.

DMAX=<real>: Maximum allowed optimization step size. Default: 0.3.

GTOL=<real>: Convergence criterion on maximum allowed gradient component. The default is 0.0003
au. Do not set it lower than 10−6 au.

DTOL=<real>: Convergence criterion on maximum predicted displacement. The default is 0.0003.
Do not set it lower than 10−6.

ETOL=<real>: Convergence criterion on energy change from previous cycle. The default is 10−6 Eh.
Do not set it lower than 10−8.

Tip: In order to converge, the criterion for GTOL must be satisfied, together with
any one of DTOL or ETOL, not necessarily both. To ensure, e.g., that DTOL is
satisfied, set ETOL so low that it will almost never be satisfied, and vice versa.

STOL=<real>: RMS gradient tolerance for steepest descent step (If RMS gradient > STOL, steepest
descent step will be taken). The default is 0.3. Do not set it lower than 10−3.

HESS=<string>: Initial Hessian matrix. Can be one of

• unit take unit matrix as starting Hessian

• default force internal initial guess

The default (if no HESS option is specified) is to read The Hessian from the .hess file if one exists,
otherwise estimate a (nominally diagonal) Hessian (note that the default starting Hessian for a Cartesian
optimization is a unit matrix).
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UPDAte=<string>: Hessian update. Valid values are

• no no Hessian update (when have exact Hessian)

• ms Murtagh-Sargent update

• powell Powell update

• bofill Powell/Murtagh-Sargent update

• bfgs BFGS update

• bfgs-safe BFGS update with safeguards

The default is bfgs for a standard minimization, bfgs-safe for a GDIIS minimization and bofill for a
transition state search.

Note: The BFGS update tends to preserve the positive-definite nature of the Hessian.
If bfgs-safe is specified then the update will be skipped if the update does not preserve
positive definiteness.

PROJect=<string>: Project out translations and rotations from Hessian matrix during Cartesian
optimization. Possible values are

• no do not project

• partial project out translations

• full project out translations and rotations (default).

TRAN: Inclusion of gradient term when transforming Hessian from Cartesian to internal coordinates
(default: do not include gradient term).

Note: The gradient term should normally only be included when an exact transfor-
mation is desired. At a stationary point, the gradient should be zero and this term is
zero in any case.

OPTCycle=<integer>: Maximum number of optimization cycles (default: 50).

CTOL=<real>: Tolerance for satisfying imposed constraints (default: 10−6).

LINEar=<real>: Tolerance for near-linear bond angle during generation of primitive internals. The
default: 165.0◦, do not set much below this. If a given primitive bond angle is greater than the value
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entered here, then it will be replaced during the generation of delocalized internals by the special colinear
bend.

BACK=<string>: Sets back transformation algorithm for internal coordinates. Possible values are

• full full back transformation using exact inverse

• zmat O(N) Z-matrix back transformation (default).

NOTOrs: Do not use torsions when generating delocalized internals. This can be useful to reduce the
(often large) number of primitive internals in the coordinate space in situations where all the deformational
degrees of freedom can be spanned using bends alone. Often useful for surface optimizations where each
atom is connected to many neighbours.

SCAL=<real>: Scaling factor for inverse-distance coordinates used in cluster optimizations (co-
ord=cluster, see above). The default is 1.00, typical values range from 1.00 to 10.00.

Tip: For weakly interacting clusters use the default. As the intermolecular interactions
get stronger, scaling should be increased. For clusters of up to 10 water molecules, a
scaling factor of 5.0 has been successfully used. Too large scaling factors tend to give a
smoother optimization, but slow down the rate of convergence.

HCNVrt: Hessian transformation flag (delocalized internals → Cartesians). At the end of a successful
optimization an approximate Hessian matrix in Cartesian coordinates is available in the .hess file. If
the optimization was performed using delocalized internal coordinates, the Hessian is tranformed from
internal into Cartesian coordinates. Normally this is done once only, at the end of the optimization. If
this keyword is present, the transformation will be done every cycle

QMMM: Must be included for a QM/MM optimization.

PRINt=<integer>: Sets the value of print flag:

• 0 NO printout (except for error messages)

• 1 summary and warning printout only

• 2 standard printout (default)

• 3 slightly more printout (including gradient)

• 4 heavier printout (including full Hessian)

• 5 heavier still (includes iterative printout)

• 6 very heavy (including internal generation)
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• 7 debug printout.

[FILE=<string>] Specifies the name of a file containing additional input for the OPTImize command
(see below).

Tip: If the file name contains spaces (frequent on Windows systems), it must be
surrounded by quote characters (either single ’, or double " quotes).
E.g. OPTI FILE="molecule 1.opt".
Note also that now the additional input of geometrical constraints and connectivity data
does NOT need to be on a separate file, but can be specified in the input cards following
the OPTImize command, as described below.

Additional Input Options: Constraints and Connectivity

Geometrical constraints (fixed values for various internal coordinates) and additional bond connectivity
(sometimes needed to ensure that a full set of internal coordinates can be generated) can be input either
directly following the OPTImize command line or via a user-defined file (option FILE above).

Note: Formerly only the latter option was available.

Constraints

$constraint defines the beginning of the constraints section and $endconstraint the end. See example
below:

$constraint

stre I J value angstrom value > 0.0
bend I J K value degrees 180.0 ≥ value ≥ 0.0
tors I J K L value degrees 180.0 ≥ value ≥ -180.0
outp I J K L value degrees ditto
linc I J K L value degrees ditto
linp I J K L value degrees ditto
$endconstraint

• stre distance constraint between any two (different) atoms.

• bend planar bend constraint between any three (different) atoms. J is the middle atom of the bend.
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• tors dihedral angle (proper torsion) constraint between any four (different) atoms. The connectivity
is I-J-K-L, with J-K being the central “bond”, the torsion is the angle the plane I-J-K makes with
the plane J-K-L.

• outp out-of-plane-bend constraint between any four (different) atoms. This is the angle made by
bond I-L with the plane J-K-L (L is the central atom).

• linc colinear bending constraint between any four (different) atoms. The bending of I-J-K in the
plane J-K-L.

• linp perpendicular bending constraint between any four (different) atoms. The bending of I-J-K
perpendicular to the plane J-K-L

linc/linp are special angles used when four atoms are near-linear. I, J, K, L are integers indicating the
positions of the atoms involved in the constraint in the order they appear in the Cartesian coordinate list
defining the molecular geometry.

Frozen Atoms

$fix defines the beginning of the frozen atom section and $endfix the end. See example below:

$fix

atom fixed format (I4,2X,A3)
$endfix

• atom integer indicating which atom in the Cartesian coordinate list is to be fixed;

• fixed character string (upper case): X, Y, Z, XY, XZ, YZ, XYZ indicates which Cartesian coordinate
or coordinates are to be fixed (XYZ fixes (freezes) the entire atom).

Tip: If all atomic coordinates (XYZ) are frozen then the optimization can be carried
out in delocalized internals, which are much more efficient. (Previously this option was
not available.) However, in order to do this all the frozen atoms must be formally
connected; if they are not, then additional connectivity should be specified to ensure
that they are (see below).

Additional Atom Connectivity

Normally delocalized internal coordinates are generated automatically from the input Cartesian coordi-
nates. This is done by first determining the atomic connectivity list, i.e., which atoms are formally bonded,
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and then constructing a set of individual primitive internal coordinates comprising all bond stretches,
all planar bends and all proper torsions that can be generated based on the atomic connectivity. The
delocalized internals are in turn constructed from this set of primitives.

The atomic connectivity depends simply on distance and default bond lengths between all pairs of atoms
are available in the code. In order for delocalized internals to be generated successfully, all atoms in the
molecule MUST be formally bonded so as to form a closed system. Formerly, for molecular complexes
with long, weak bonds or in certain transition states where parts of the molecule are rearranging or
dissociating, the standard atomic connectivity algorithm separated the system into two or more distinct
parts, and the generation of delocalized internals failed. Additional connectivity needed to be input
in order to connect the disparate fragments. This should no longer be necessary as the connectivity
algorithm has now been modified and should successfully generate a full set of delocalized internals for
virtually all systems.

Note: It should only be necessary to specify additional atomic connectivity in the
case where there is a subset of frozen atoms, not all of which are formally bonded (see
above).

$connect defines the beginning of the additional connectivity section and $endconnect the end. See
example below:

$connect

atom list format (I4,2X,8I4)
$endconnect

• atom atom for which additional connectivity is being defined;

• list list of up to 8 atoms considered as being bonded to the given atom.

Surface Constraints

In optimizations involving model surfaces, one or more (or sometimes all) layers of surface atoms may be
kept fixed. $surface defines the beginning of the surface constraints section and $endsurface the end.
See example below:

$surface

fixed <list>

$endsurface

• <list> either a list of surface atoms to be fixed (format (10X,10I4), the 10X starts from the
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beginning of the line and includes the fixed string) or the character string all to fix all surface
atoms

Dummy Atoms

$dummy defines the beginning of the dummy atom section and $enddummy the end. See example below:

$dummy

idum type list format (I4,2X,I4,2X,7I4)
$enddummy

• idum center number of dummy atom (should be one greater than total number of real atoms for
first dummy atom; two greater for second and so on);

• type which type of dummy atom (either 1, 2 or 3; see below);

• list list of up to 7 atoms defining position of dummy atom.

Dummy atoms are used to help define constraints during constrained optimizations in Cartesian coordi-
nates. They CANNOT be used with delocalized internals.

All dummy atoms are defined with reference to a list of real atoms and dummy atom coordinates will
be generated from the coordinates of the real atoms in its defining list. There are three types of dummy
atom

1. Positioned at the arithmetic mean of the up to 7 real atoms in the defining list

2. Positioned a unit distance along the normal to a plane defined by three atoms, centered on the
middle atom of the three

3. Positioned a unit distance along the bisector of a given angle

Once defined, dummy atoms can then be used to define standard internal (distance, angle) constraints
as per the constraints section, above.

Note: The use of dummy atoms of type 1 has never really progressed beyond the
experimental stage. Avoid if possible. Will not always work.
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Rules for dummy atom placement in dihedral constraints

Bond and dihedral angles cannot be constrained in Cartesian optimizations to exactly ±0◦ or ±180◦.
This is because the corresponding constraint normals are zero vectors. Also dihedral constraints near
these two limiting values (within, say, 20◦) tend to oscillate and are difficult to converge.

These difficulties can be overcome by defining dummy atoms and redefining the constraints with respect
to the dummy atoms. For example, a dihedral constraint of 180◦ can be redefined to two constraints of
90◦ with respect to a suitably positioned dummy atom. The same thing can be done with a 180◦ bond
angle (long a familiar usage in Z-matrix construction).

Typical usage is as follows:

(i) Internal coordinates

$constraint

tors I J K L 180.0

$endconstraint

(ii) Cartesian coordinates

$dummy

M 2 I J K

$enddummy

$constraint

tors I J K M

tors M J K L

$endconstraint

The atom order is important to get the correct signature on the dihedral angles. For a 0◦ dihedral
constraint, J and K should be switched in the definition of the second torsion constraint in Cartesian
coordinates.

Note: In the vast majority of cases the above discussion is somewhat academic, as
internal constraints are now best imposed using delocalized internal coordinates AND
there is no restriction on the constraint values.

3.2.25 CLEAn Command

Options: CLEAn[=ALL]

Cleans up (removes) specific files after a geometry optimization.

This command was introduced primarily to prevent a second or subsequent optimization in the same
input file from using the .opt and .optchk files left over from a previous failed optimization.

OPTIMIZE is designed so that if a given optimization fails, any restart will automatically attempt to
continue from where the previous job left off by reading intermediate data from an .optchk file, assuming
one exists. If an input deck contains multiple optimization steps, either explicit or implicit (e.g., in an

94 PQS Manual



The PQS Style Input File

optimized potential scan), it may be desirable to continue with the current optimization even if the
previous one failed. Adding the CLEAn command at the end of an optimization loop will delete both
the .opt and .optchk files, ensuring that the next optimization starts properly.

Note: After a successful geometry optimization, these files are automatically deleted.

There is one option, CLEAn=ALL which deletes the hess file as well. This prevents any subsequent
optimization from picking up the previous Hessian matrix, and forces a new initial Hessian estimation.
This may seem counterintuitive, as it is normally a good idea for a related optimization to make use of
the previous optimization’s Hessian, but sometimes this is not always the case.

One such situation is during an optimized potential scan where a bond length is being stretched to a
fairly large value. (See the SCAN command.) Optimized potential scans are effectively constrained
optimizations with the scanned variable as the constraint. Constrained optimizations can break down if
the Hessian matrix develops very small eigenvalues, something that will almost inevitably occur if the
same Hessian is updated repeatedly as a bond length stretches. Under these circumstances it is best to
start with a newly estimated Hessian at the start of each optimization following incrementation of the
scanned variable. This can be accomplished via the CLEAn command as in the following example input
deck:

SCAN

OPTIM

SCF

FORCE

JUMP

CLEAN=ALL

JUMP

3.2.26 DYNAmics Command

Options: STEP=<real> TEMPerature=<real> MAXCycle=<integer> [SEED=<integer>]

Initiates a direct classical molecular dynamics run. This is a loop command, requiring a terminating
JUMP card. Typical usage would be:

GEOM SYMM=0 (needed if the initial geometry is symmetrical - see below)
DYNAmics STEP=40 TEMP=000 MAXC=5001
SCF

FORCe

JUMP
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Note: Symmetry must be suppressed when carrying out a dynamics run because
the atoms are started with random velocities which destroys the symmetry anyway. This
can be accomplished by inserting a GEOM SYMM=0.0 card in front of the DYNAm card.
The preceding optimization step (if the user chooses to perform one) can use symmetry.
(See input example 18).

STEP=<real>: This is the time step in atomic units. The atomic unit of time is η/Eh ≈ 2.4188843
10−17 s = 0.024 188 843 fs, and thus 41 au ≈ 1 fs.

Note: Chemical reactions may take a very long time to occur, even if the temper-
ature, and thus the available energy, is more than sufficient to surmount the barrier. A
common trick to circumvent this difficulty is to start the trajectory from the transition
state.

TEMPerature=<real>: Initial starting temperature in degrees Kelvin.

Note: In the current implementation, there is no thermostat. The temperature
is thus not accurate, it serves only as an orientation value. The initial kinetic energy
given to the atoms is kT (not kT/2). In a system of harmonic oscillators, the average
kinetic energy is equal to the average potential energy, and thus the average kinetic
energy, if the dynamics run was started at the energy minimum, will develop toward the
approximately correct value kT/2.

MAXCycle=<integer>: Maximum number of dynamics cycles, i.e., the length of the run.

SEED=<integer>: The program uses a seed, which is derived from the time and thus is truly random,
to initialize the random number generator which is needed to set the initial velocities. A disadvantage
of this method for is that a dynamics run is impossible to reproduce. The SEED option allows the user
to set the random seed. If SEED is not specified, the random seed is printed out and can be used in
subsequent jobs.

Note: The trajectory is written to the file <jobname>.trajec. This file contains
the Cartesian coordinates of the atoms in each time step.

3.2.27 QMMM Command

Options: [PRINt=<integer>]
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The idea behind QM/MM methods is to define a (small) region of the system of interest which will be
computed using a fairly accurate, high-level model, and a (much larger) region for which a less accurate,
low-level model can be used. For example, in a large model protein or enzyme, most of the chemistry
takes place around the “active site” – this can be modeled using quantum mechanics, while a mechanics
force field can be used for the rest of the system; hence the name QM/MM. The term has now been
generalized to refer to a high level calculation for one (or more) regions of the system and a lower level
(not necessarily molecular mechanics) for the rest.

The major problem with QM/MM is how to treat the interaction between the two regions. The approach
which we have adopted is the so-called ONIOM method, as popularized by Morokuma and coworkers [88].
If any formal bonds are “broken” between the QM and MM regions, then “link atoms” (usually hydrogen)
are added to saturate the free valency. Three calculations are done, the full system at the MM level, and
the inner region (including any extra link hydrogen atoms) at the QM level and again at the MM level.
The QM/MM energy is defined as:

EQM/MM = Efull
MM + Einner

QM − Einner
MM

With this simple definition, it is straightforward to define QM/MM gradients and Hessians (although the
latter are not yet included in our code) as well as other molecular properties. A useful reference, from
which our own algorithm was coded, is the work of Dapprich et al. [89].

Tip: If you plan to do a “QM/QM” calculation with, e.g., a large basis set for the
“inner” region and a small basis for the rest of the system, this can be done within the
existing code without invoking QM/MM. See the BASIS command for details.

To designate the “inner” (QM) part of your molecule the $molecule designator (see the GEOM com-
mand) should be used. Atoms before the $molecule will be treated by the chosen QM method; all atoms
after the $molecule will be treated by the low level method.

The current QM/MM module is only preliminary and needs to be revised. There are no options to the
command line other than PRINt.

Tip: QMMM is a rather complex command. It will almost invariably be used as part
of a geometry optimization. A full example showing how to place the QMMM cards in
the input deck for a QM/MM optimization is given in the Examples section (example
26).
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3.2.28 SCAN Command

Carries out a potential scan, i.e., changes one variable while keeping the others fixed. By combining with
OPTIMIZE, it is possible to carry out a scan on one variable while optimizing all remaining degrees of
freedom. SCAN is a loop command, requiring a terminating JUMP card. Typical usage would be:

SCAN ZMAT <scan definition>

GEOM=ZMAT PRINT=1

SCF

JUMP

The input card for SCAN must be EITHER of the form

SCAN coord <atom list> FROM <range> <step>

e.g. SCAN tors I J K L FROM -30.0 30.0 5.0

OR of the form (for a Z-matrix scan)

SCAN ZMAT <z-matrix variable> FROM <range> <step>

e.g. SCAN ZMAT L1 FROM 1.0 1.6 0.05

There are no other options.

A potential scan alone is best done via a Z matrix, as this is the only way to define and fix the remaining
variables. (The scan can be done in delocalized internal coordinates, but the remaining variables will
be ill-defined, being linear combinations of stretches, bends and torsions rather than the well-defined
individual internal coordinates that make up the Z matrix.) For an optimized scan, it doesn’t matter
how the remaining degrees of freedom are defined (only the scan variable is important) as they will be
optimized in any case, so this can be done in Z-matrix coordinates or (best) delocalized internals. For
input examples, see the Examples section.

An optimized scan using delocalized internals is done effectively in the same way as a constrained opti-
mization, with the scanned variable as the constraint. It is possible to do a constrained optimized scan
by specifying additional constraints for the optimization loop; the scanned variable is simply added to
the constraint list.

Tip: If your molecule has symmetry which the variable to be scanned breaks (e.g.,
ethane scanning the H-C-C-H torsion) then you should distort the starting geometry
slightly yourself prior to starting the scan.

Note: It is not possible to do a potential scan in Cartesian or surface/cluster coor-
dinates.
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See also the CLEAn command.

3.2.29 PATH Command

Options: [COORd=<string>] [DMAX=<real>] [DTOL=<real>] [ITERations=<integer>]
[SIGN=<integer>] [PRINT=<integer>]

Follows a reaction path downhill from the transition state to the reactant and/or product.

This is a double loop command, requiring two PATH cards and a terminating JUMP card. Typical
usage would be:

PATH

SCF

PATH

FORCE

JUMP

During the line search, the program loops between the two PATH commands. Whenever a gradient is
needed following a successful line search the second PATH is “by-passed” and the program loops between
the first PATH and the JUMP command.

The concept of a reaction path, although seemingly well-defined chemically (i.e., how the atoms in the
system move to get from reactants to products), is somewhat ambiguous mathematically because, using
the usual definitions, it depends on the coordinate system. Stationary points on a potential energy
surface are independent of coordinates, but the path connecting them is not, and so different coordinate
systems will produce different reaction paths. There are even different definitions of what constitutes a
“reaction path;” the one used in PQS is based on the intrinsic reaction coordinate (IRC), first defined in
this context by Fukui [90]. This is essentially a series of steepest descent paths going downhill from the
transition state.

The reaction path is most unlikely to be a straight line and so by taking a finite step length along
the direction of the gradient you will leave the “true” path. A series of small steepest descent steps
will zig-zag along the actual reaction path (this is known as “stitching”). Ishida et al. [91] developed
a predictor-corrector algorithm, involving a second gradient calculation after the initial steepest descent
step, followed by a line search along the gradient bisector to get back on the path; this was subsequently
improved by Schmidt et al. [92], and is the method we have adopted. For the first step downhill from the
transition state this approach cannot be used (as the gradient is zero); instead a step is taken along the
Hessian mode corresponding to the imaginary frequency.

The reaction path can be defined and followed in Z-matrix coordinates, Cartesian coordinates or mass-
weighted Cartesians. The latter represents the “true” IRC as defined by Fukui [90]. However, if the
main reason for following the reaction path is simply to determine which minima a given transition state
connects (perhaps the major use), then it doesn’t matter which coordinates are used.
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Note: In order to use PATH you must know (and input) the transition state geom-
etry and you must have the exact Hessian available in the .hess file.

COORd=<string>: Coordinate system used to define and follow the reaction path. Can be one of

• cart Cartesian coordinates

• mwgt mass-weighted Cartesian coordinates

• zmat z-matrix coordinates.

The default is mass-weighted Cartesians.

DMAX=<real>: Approximate maximum step size between points on reaction path. Default: 0.15.

DTOL=<real>: Convergence criterion on step size. Default: 0.005.

Normally the maximum step size will be taken. However, towards the end of the path, i.e., near the
reactants or products, the gradient will be reduced and the step size will be smaller. If the predicted step
size gets below DTOL, then the reaction path search will stop.

Note: The algorithm is not designed to follow the reaction path all the way to the
minimum, and normal termination is after a specific number of steps (see ITER).

ITERations=<integer>: Number of points to find on reaction path. Default: 20.

SIGN=<integer>: Defines downhill direction from transition state. Default:+1.

Must be either +1 (follow eigenmode downhill) or -1 (change sign of eigenmode). In all likelihood you
won’t know the direction prior to the Hessian diagonalization, but setting SIGN=-1 will go in the
opposite direction (i.e., towards the other minimum).

PRINT=<integer>: Sets value of print flag (higher value, more printout).
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The Pople Style Input File

The Pople style input has the following general format:

1. Preamble: %MEM, %CHK, %RWF cards

2. Route information

3. Title

4. Charge and multiplicity

5. Molecular geometry, possibly in two parts: geometry and parameters

6. Optional CONV keyword (no run, only input conversion to PQS input is requested).

The same typographic conventions apply to the Pople style input as to PQS input. These are: Case does
not matter; characters following an exclamation mark (!) are removed as comments; in general, only the
first 4 characters of a word are significant.

The route and title sections must be terminated by a blank card. The first route card must have a hash
sign (#) as its first non-blank character. If the CONV option is used, the whole input preceding the
CONV command must also be terminated by a blank.

4.1 Preamble

• %MEM=n: If n < 2000, n Megawords (8n Megabytes) of memory are requested. If n > 2000, n
words (8 bytes) are requested. n may be a real number, e.g., 3.5.

• %CHK=<old job>: This option has two effects. First, all files <old job>.* are copied to
<jobname>.*, allowing the calculation to start with data from <old job>. Second, the program
saves its own files under the jobname <old job>. It is thus a combination of the CHK and SAVE
options of the PQS FILE command (see section 3.2.2).
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• %RWF=<path>. Redefines the location of the scratch directory. This has the same effect as the
SCR option of the PQS FILE command (see section 3.2.2).

4.2 Route

The route card is often a single line but can be written in 2 or more lines. It is terminated by a blank
line. The route card has the following information:

• Print flag: The first non-blank character on the route card MUST be a hash sign (#). The hash
sign is optionally followed by the letter P (#P), signaling that the print option is on. The Pople
style input has only one print option which is on or off for all program steps. It can thus produce
copious amounts of printing. If finer control of printing is needed, use the PQS input, or edit the
.pqs file generated from the Pople style input.

• Method/Basis set: The next field, separated from the first (# or #P) by one or more blank spaces,
is the method/basis information: <method>/<basis>. Currently <method> is limited to (R)HF,
(R)HFS, (R)SVWN, (R)SVWN5, (R)BVWN, (R)BVWN5, (R)BLYP and (R)B3LYP, the same
eight methods with R replaced by U, and (R)MP2. The first R can be omitted in the restricted
methods. For more details of these methods see the SCF command.

The <basis> field can be any of the basis sets listed in the PQS description (BASIs command),
not just the Pople-style basis sets.

Note: The method and basis must be separated by a slash (/) without spaces .

• Calculation type: This can be absent, in which case a single point energy is calculated, with a few
properties. Possible calculation types are currently:

– SP: Single point (default)

– FORCE: Calculate forces (negative gradients) on the nuclei

– OPT: Geometry optimization

– FREQ: Calculate force constants and vibrational frequencies

– NMR: Calculate NMR chemical shifts

– DYNA: run a direct ab initio classical molecular dynamics trajectory

– MP2: run an MP2 calculation after other job steps (e.g. optimization)

• Options for the program steps:

– GEOM=<geometry type>: Possible types are ZMAT (default), CART (PQS Cartesian in-
put), and many other types described in the PQS input description (GEOM command).
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– UNIT=BOHR: Changes the default coordinate unit from Angstrom (10−10 m) to Bohr (0.529177
× 10−10 m).

– NOSYmmetry: Suppresses symmetry. SYMM=<real> (e.g. SYMM=0.05) sets a threshold
for symmetrization of an approximately symmetrical molecule, as obtained, e.g., from a graph-
ical modeling program. NOSYm is equivalent to SYMM=0.0. See the GEOM command
for more details.

– GUESs=<guess type>: Allowed types are MINDo, HUCKel, READ.

– SCF=TIGHT: Requests tighter SCF thresholds. This is the default for all but single point
calculations.

– SCFCycle=<integer>: Maximum number of SCF cycles, default is 50.

– VSHIft=<real>: Level shift applied to the virtual orbitals, in atomic units. Note that this
definition is not the same as in some other programs where VSHIFT is expressed as an integer,
1 meaning 1.0E-4 hartree.

– COOR=<coordinate type for optimization>: Possibilities are CART, ZMAT. The default is
delocalized coordinates.

– OPTCycle=<integer>: The maximum number of optimization cycles.

– TS (logical flag): Transition state optimization is requested.

– GDIIs=<integer>: The maximum number of steps stored in a geometry DIIS procedure.

– MAXD=<integer or real>: The maximum amount of disk space the MP2 procedure can use,
in megawords ( 1 MW = 8 MB).

– STEP=<real>: The time step for a molecular dynamics run, in atomic units (1 au of time is
about 0.024 fs).

– MAXCycle=<integer>: The maximum number of molecular dynamics cycles.

– TEMP=real: The approximate initial temperature of a molecular dynamics run.

– POP[=<string>]: Population Analysis. Possible values are MULLiken, LOWDin, FULL,
NBO. (POP alone requests Mulliken and Löwdin charges, valencies and free valencies but no
bond orders). See the description of the population analysis module and the NBO module
earlier in this manual.

4.3 Title

The title section is constituted by one or more text lines containing the calculation title, terminated by
a blank line.

4.4 Charge and Multiplicity

This section contains the charge and multiplicity of the molecule as 2 integer numbers on the same line.

Parallel Quantum Solutions 103



4.5 Geometry

4.5 Geometry

Geometry specification, terminated by a blank line. If there are any parameters in a Z matrix input, they
must be preceded by an empty line.

4.6 CONV keyword

The Pople style input stream can be optionally terminated by a blank card followed by the keyword
CONV. This tells the input reader that it should only transform the Pople style input to PQS style
input but should not run the job. E.g., let us assume that the Pople style input is in the file nic2h2.com.
The command

pqs nic2h2.com

transforms the file nic2h2.com , shown left, to nic2h2.pqs, right:

%MEM=5

# BLYP/6-31G* FORCE VSHIFT=5

Nickel-acetylene complex

0 1

Ni

X 1 1.9

C 2 0.62 1 90.

C 2 0.62 1 90 3 180.

H 3 1.06 2 180. 1 90.

H 4 1.06 2 180. 1 90.

CONV

%MEM=5

TITLE=Nickel-acetylene complex

GEOM=ZMAT GEOP SYMM=0.000010

Ni

X 1 1.9

C 2 0.62 1 90.

C 2 0.62 1 90. 3 180.

H 3 1.06 2 180. 1 90.

H 4 1.06 2 180. 1 90.

VARIABLES

BASIS=3-21G

SCF ITER=6 DFTP=blyp LVSH=5.00

BASIS=6-31g*

SCF LOCA=PIPEK DFTP=blyp LVSH=5.00

FORCE
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The Gauntlet

PQS comes with an extensive series of test jobs that are collectively referred to as “The Gauntlet”.
These can be used to stress test the capabilities of the program and of the computer system on which
the program is running, and can also serve as input examples for job preparation. The gauntlet jobs,
together with their output files, can be found inside PQS ROOT in the GAUNTLET directory. They are
divided in the following subdirectories:

• EXAMPLES. All the test examples described in the next section. Most use the PQS input style, but
tests 13–16 use the Pople style input. These jobs are generally very fast, with execution times
ranging from few seconds up to a few minutes. They are meant to test the program capabilities,
and should not be used to judge the program performance. All but test31 can be ran in parallel
(again, the parallel efficiency of the program should not be judged based on these runs).

• POPLE. Further test jobs using the Pople style input.

• SMALL. Contains primarily small jobs (total runtime per job measured in minutes). These jobs
should be ran in single processor mode.

• MID. Larger jobs. In single processor mode these calculation may take up to an hour each. They
can be ran also in parallel up to four processors.

• BIG. Long jobs, including large geometry optimizations. They should be ran in parallel with 4 or 8
processors.

• XL. Very large jobs (up to 1500 basis functions) to test program performance. Run only in 4- or 8-
processors mode.

5.1 Examples

This section contains 38 input files, selected to allow a rapid test of the capabilities of the PQS program,
and also serve as examples for input preparation. The job types are summarized in Table 5.1. The
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Table 5.1: PQS input examples.

Test Molecule Theory Level Job Type Page
1 H2O RHF/6-31G* Geometry optimization 107
2 NH3 SVWN/6-311G** Z-matrix geometry optimization 108
3 CH4 BLYP/6-31G* Optimization + analytical frequencies 109
4 H2O B3LYP/3-21G Constrained optimization 110
5 HCN ⇀↽ HNC B3LYP/6-31G** Transition State + Frequencies 111

6a C3H6Cl2 RHF/STO-3G Constrained optimization in delocalized internal coor-
dinates

112

6b C3H6Cl2 RHF/STO-3G Constrained optimization in Cartesian coordinates with
dummy atoms

112

7 H2O B3LYP/6-31G* Different basis on each hydrogen 113
8 O3 HF/3-21G RHF Optimization + UHF singlet and NBO analysis 114
9 C6H6 RHF/6-31G* NMR in an external electric field 115

10 H2O B3LYP/6-31G** Optimization, NMR, NBO and frequencies in an exter-
nal electric field

116

11 (H2)10 RHF/3-21G Optimization of molecular cluster 117
12 CO on Si RHF/3-21G Optimization of adsorbed molecule 118
13 C6H3F3 B3LYP/3-21G Cartesian optimization with force field preoptimization

and Hessian
119

14 H2O RHF/6-31G* Optimization with Pople style input 120
15 CH4 BLYP/6-31G* Optimization + frequencies, Pople style 120
16 H2O RHF/6-31G* Optimization + MP2 energy, Pople style 120
17 H2O2 BPW91/VDZP Optimization + frequencies with Raman intensities 121
18 HF + H2O RHF/6-31G Energy with HF as ghost atoms 122
19 C2H∗

5 UBLYP/6-31G** Optimization + nuclear properties 122
20 H2O2 B3LYP/6-31G* Optimization + molecular dynamics 123
21 C2H4 RHF/3-21G Z-matrix potential scan along C-C bond 123
22 C2H4 RHF/3-21G Optimized potential scan along C-C bond 124
23 H2CO ⇀↽ H2 + CO BLYP/6-31G** Cartesian reaction path 124
24 HCN ⇀↽ HNC B3LYP/6-31G** Z-matrix reaction path 125
25 H2O RHF/6-311G(3df,3pd) Dual basis MP2 125
26 SeP(CH3)3 RHF/QMMM QM/MM geometry optimization 126
27 CH3OH RHF/DZP Optimization + frequencies 127
28 H2O RHF/cc-pVQZ MP2 (spherical G functions) 127
29 CH2O B3LYP/cc-pVTZ Optimization + WAH NMR shieldings 128
30 CO OLYP/6-311G** Optimization + NMR with level shift 128

31a HF MP2/PC-2 Optimization 129
31b HF MP2-SCS/PC-2 Optimization 129
32 NO PBE/6-311G** Optimization + frequencies 130
33 C2H3F2Cl OLYP/PC-2 Optimization with FTC + semidirect 130
34 HCl BVP86/SVP Optimization + frequencies in gas phase and water via

COSMO
131

35 C2H5OH RHF/CEP-121 Optimization + frequencies + NMR 132
36 (H2)2 MP2/6-311G** Ghost atoms and symmetry 132
37 CHFClBr RHF/3-21G optimization, Frequencies, NMR and VCD 133
38 C3H6 B97/3-21G optimization, Frequencies and population analysis 133
39 C3H7O2N PM3 Multiple constraint optimization 134
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corresponding input and output files can be found in the directory ${PQS ROOT}/GAUNTLET/EXAMPLES
("%PQS ROOT%\GAUNTLET\EXAMPLES" on Windows).

1. Standard RHF/6-31G* Geometry Optimization of Water

TEXT= Standard 6-31G* optimization of water

GEOM=zmat

O

H 1 L1

H 1 L1 2 A1

VARIABLES

L1 1.0

A1 105.0

BASIS=6-31G*

GUESS

OPTIM ---------------

GUESS=READ |

SCF | Basic Optimization Loop

FORCE |

JUMP ---------------

Note: Even though the input geometry is via a Z-matrix, the optimization will be
carried out using (default) delocalized internal coordinates (not Z-matrix coordinates).
Note further that in PQS version 2.3 and higher the GUESS commands and the integer
on the JUMP card are no longer necessary. They are given for the sake of completeness
and to show the proper position of the GUESS command in the job input.

Parallel Quantum Solutions 107



5.1 Examples

2. SVWN/6-311G** Z-matrix Optimization of Ammonia

TEXT= Ammonia Z-matrix optimization SVWN/6-311G**

GEOM=zmat

N

X 1 1.0

H 1 L1 X A1

H 1 L1 X A1 3 120.0

H 1 L1 X A1 3 -120.0

VARIABLES

L1 1.0

A1 105.0

BASIS=6-311GDP

GUESS

OPTIM coord=zmat ---------------

GEOM=zmat |

GUESS=READ | Z-matrix Optimization Loop

SCF dftp=svwn |

FORCE |

JUMP 5 ---------------

Note: This illustrates the difference between the Z-matrix optimization loop and the
standard (non-Z-matrix) optimization loop in example 1. The extra GEOM card (with
option zmat) must be included, as must the coord=zmat option with the OPTIM card.
Because of the extra GEOM card, the JUMP loop is now 5 (one more than previously).
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3. BLYP/6-31G* Optimization Plus Analytical Frequencies for Methane

%MEM=6

TEXT= Methane geometry optimization + analytical frequencies

GEOM=PQS

C 0.0000000 0.0000000 0.0000000

H 0.6293118 -.6293118 0.6293118

H -.6293118 0.6293118 0.6293118

H 0.6293118 0.6293118 -.6293118

H -.6293118 -.6293118 -.6293118

BASIS=6-31G*

OPTIM gtol=0.00005 ------------

GUESS=READ |

SCF dftp=blyp | Optimization Loop

FORCE |

JUMP 4 ------------

HESS

FREQ

As with examples 1 and 2, none of the GUESS commands or the integer on the JUMP cards are strictly
necessary. They are given for the sake of completeness and to show the proper position of the GUESS
command in the job input. In most subsequent examples, unnecessary GUESS cards will be omitted.
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4. Constrained Optimization on Water

TEXT= Water constrained optimization H---H fixed

GEOM=zmat

O

H 1 L1

H 1 L1 2 A1

VARIABLES

L1 1.0

A1 105.0

BASIS=3-21G

INTE thresh=10,8

OPTIM gtol=0.00005 print=4

$constraint

stre 2 3 1.8

$endconstraint

SCF dftp=b3lyp

FORCE

JUMP

Here we have a constrained optimization with the constraint directly embedded in the input file. The
stretch coordinate (distance) between atoms 2 and 3 (the two hydrogens) will be constrained to 1.8 Å.
This stretch coordinate will not normally be one of the primitives generated as the two H atoms are not
formally bonded; it will be added to the coordinate set in order to impose the constraint.

Note: The desired constraint value is not satisfied in the starting geometry; this can
be handled by the OPTIMIZE module.
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5. HCN ⇀↽ HNC Transition State Search Plus Frequencies

TEXT= HCN <---> HNC TS search + frequencies B3LYP/6-31G**

GEOM=zmat

C

N 1 L1

H 1 L2 2 A1

VARIABLES

L1 1.126

L2 1.2

A1 90.0

NUMHESS fdstep=0.005 -------

GEOM noorient print=1 | Preliminary Numerical Hessian Loop

SEMI=PM3 | using semiempirical PM3

JUMP -------

GEOM print=1

BASIS=6-31G**

OPTIM type=ts print=4 -------

SCF dftp=b3lyp | Optimization

FORCE | Loop

JUMP -------

HESS ------- Final Analytical Hessian for ab initio

FREQ

Note: Transition state searches are rarely successful without a good starting Hessian.
In this example an initial Hessian is calculated numerically before starting the main
optimization loop; this is done using PM3. (The recommended finite-difference step
size for semiempirical wavefunctions is 0.005 a.u.) PM3-generated starting Hessians are
not always suitable for transition state searches, but should certainly be tried if nothing
better is available. There are no problems at all in this case.

The main level of theory is B3LYP/6-31G**. The optimization will be done in delocalized internal
coordinates and the optimization options include TYPE=ts for a TS search. (Actually in this example
the same coordinates are generated as are present in the Z-matrix, and a Z-matrix optimization should
give an identical performance.) The final DFT Hessian is calculated analytically.
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Figure 5.1: 1,2-dichloropropane

6. Constrained Optimization on 1,2-dichloropropane Showing Use of Dummy
Atoms

TEXT= Constrained optimization test 1,2-dichloropropane

GEOM=car file=dichloroprop.car

BASIS=STO-3G

OPTIM coord=deloc/cart print=3 file=dichloroprop.opt0

SCF

FORCE

JUMP

Contents of user file dichloroprop.opt0:

1. Delocalized internal coordinates

$constraint -------

stre 2 3 2.5 |

bend 1 3 9 110.0 | Constraints defined with respect

tors 6 2 1 8 180.0 | to real atoms in the molecule

$endconstraint -------

2. Cartesian coordinates

$dummy -------

12 2 6 2 1 | Dummy atom defined first

$enddummy -------

$constraint -------

stre 2 3 2.5 |

bend 1 3 9 110.0 |

tors 6 2 1 12 90.0 | Torsion constraints defined with respect

tors 12 2 1 8 90.0 | to dummy and real atoms

$endconstraint -------
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The two optimizations impose exactly the same set of constraints. However, because of the impossibility
of directly imposing 0◦ or 180◦ torsion constraints in Cartesian coordinates, in the latter optimization
the torsion is redefined as two 90.0◦ constraints with respect to a dummy atom perpendicular to the
constraint planes. Carrying out the optimization using delocalized internals is far more efficient, as well
as being more straightforward to set up.

Note: In both examples, constraints are added via an external file; alternatively the
file contents could have been embedded directly into the input file, immediately following
the OPTIM command line (see example 4).

7. B3LYP/6-31G* Water With Different Basis Set on Each Hydrogen

%MEM =3000000 core=2000000

TEXT= Water with different basis set on each H

GEOM=pqs

O1 0.0 0.0 -0.405840

H2 -0.793353 0.0 0.202920

H3$ 0.793353 0.0 0.202920

BASIS=6-31G* NEXT

FOR H$

S 5.447178 0.156285

0.824547 0.904691

S 0.183192

INTE thresh=10,8

OPTIM coord=internal gtol=0.00005 print=4

SCF dftp=b3lyp semi

FORCE

JUMP

GEOM geop

NMR

This small job will be ran in semidirect mode, with 2 million words of memory reserved for integral
storage (sufficient in this case to store all integrals).
Note the use of the “special symbol” (in this case a $) to get a different basis from the standard for one
of the H atoms. Despite the fact that the initial coordinates show C2v symmetry, only Cs symmetry will
be used during the optimization and the final geometry will break C2v symmetry (due to the different
basis functions on the H atoms). The NMR shieldings will also be different for each H atom.

Tip: The geop option on the final GEOM card will cause the converged O-H bond
lengths to be printed out, making explicit the extent of the symmetry breaking.
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8. RHF/3-21G Z-matrix Optimization of Ozone plus UHF Singlet and NBO
Analysis

TEXT= Ozone Z-matrix optimization + UHF singlet + NBO

GEOM=ZMAT

O

O 1 L1

O 1 L1 2 A1

VARIABLES

L1 1.4

A1 120.0

BASIS=3-21G

OPTIM coord=zmat dmax=0.15 print=4

GEOM=zmat print=1

SCF

FORCE

JUMP

NBO ! --- NBO analysis on RHF wavefunction

GEOM=read symm=0.0 ! --- no symmetry for UHF

GUESS=READ UHFS MIX angle=45.0 ! --- mixing alpha & beta MOs

INTE thresh=10,8 ! --- restoring original integral threshold

SCF

NBO ! --- NBO analysis on UHF wavefunction

Note: The GUESS card is required in order to access the UHFS and MIX options.
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9. RHF/6-31G* NMR Shielding for Benzene in an External Electric Field

TEXT= Benzene NMR Shielding along principal axis

GEOM=PQS

C -1.207353 -0.697066 0.0

C -1.207353 0.697066 0.0

C 0.0 1.394131 0.0

C 1.207353 0.697066 0.0

C 1.207353 -0.697066 0.0

C 0.0 -1.394131 0.0

H -2.142871 -1.237187 0.0

H -2.142871 1.237187 0.0

H 0.0 2.474375 0.0

H 2.142871 1.237187 0.0

H 2.142871 -1.237187 0.0

H 0.0 -2.474375 0.0

Q 5.0 0.0 50.0 9.0

Q -5.0 0.0 50.0 9.0

Q 0.0 5.0 50.0 9.0

Q 0.0 -5.0 50.0 9.0

X 5.0 0.0 -50.0 -9.0

X -5.0 0.0 -50.0 -9.0

X 0.0 5.0 -50.0 -9.0

X 0.0 -5.0 -50.0 -9.0

X 0.0 0.0 0.0

X 0.0 0.0 0.5

X 0.0 0.0 -0.5

X 0.0 0.0 1.0

X 0.0 0.0 -1.0

BASIS=6-31G* DUMMY

SCF

NMR

Here dummy atoms are used to mimic the effects of a uniform field. Note the location of the dummies
and their charges. Single dummy atoms at (0,0,±50) could have been used instead, but the field would
have been less uniform. Dummy atoms with a positive charge have been given the symbol Q, whereas
those with a negative charge are denoted by X. This helps with symmetry recognition (C2v in this case).
The nuclear magnetic shielding will be computed at all carbon atoms, all hydrogens and at the five
positions given by the last five dummies (all along the principal axis). These dummies are not included
in the symmetry determination.
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10. BLYP/6-31G** Optimization, Numerical Frequencies, NMR and NBO
Analysis for Water in an Electric Field

TEXT= Water various showing use of dummy atoms

GEOM=PQS

O 0.00 0.0 -0.405840

X 0.00 0.00 -50.000000 9.0

X 0.00 0.00 50.000000 -9.0

H -0.793353 0.00 0.202920

X 0.50 0.50 0.50

H 0.793353 0.0 0.202920

BASIS=6-31G** DUMMY

OPTIM coord=internal print=3

SCF DFTP=BLYP

FORCE

JUMP

NMR

NBO

NUMHESS fdstep=0.02 -------

GEOM NOORIENT PRINT=1 | Numerical Hessian

SCF DFTP=BLYP | Loop

FORCE |

JUMP -------

GEOM NOORIENT PRINT=1

FREQ

Here dummy atoms are used to mimic the effects of a uniform field. The uncharged dummy atom at
(0.5,0.5,0.5) will be excluded from the symmetry determination (hence the system will be recognized as
C2v), but will be included in both the NMR and NBO analyses. The charged dummy atoms along the
principal axis will be excluded from all molecular property determinations.

Note: The numerical Hessian plus frequency should be the last properties computed
as the numerical Hessian loop will destroy the converged MO and binary density files.
The GEOM card in the numerical Hessian loop must include noorient and should also
include print=1. The finite-difference (central differences are used) step size of 0.02
a.u. is the current recommended value for DFT wavefunctions. Note also the use of
noorient on the final GEOM card before the frequency analysis (the geometry should
not be reoriented in the presence of an applied field – compare this with example 17).
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11. RHF/3-21G Optimization of 10-molecule H2 Cluster

TEXT= Randomly generated 10-molecule H2 Cluster

GEOM=PQS

h1 9.312880896 0.068981920 1.583083577

h2 9.184311798 0.569133067 2.084799449

$molecule

h3 9.703799891 2.750525348 2.238102939

h4 9.594408699 3.447999309 2.096810187

$molecule

h5 6.990854245 0.262543127 2.119289305

h6 6.942340403 0.970578861 1.997914649

$molecule

h7 9.934168615 4.165684282 0.419657171

h8 9.609286136 4.718387243 0.747332028

$molecule

h9 7.572245704 0.701916772 3.784739353

h10 6.995634965 1.078738605 3.994323134

$molecule

h11 5.249253820 0.135389887 1.060880149

h12 5.043662023 0.803819832 1.232150174

$molecule

h13 7.628550909 4.250882101 0.974189438

h14 7.346010396 3.805632099 1.464417237

$molecule

h15 5.316176578 2.694413190 2.119907053

h16 5.951167335 2.806792553 2.440153235

$molecule

h17 7.067429324 3.464539696 4.384161347

h18 6.943045015 4.111988363 4.673537861

$molecule

h19 10.367557821 5.385222847 2.469758640

h20 10.040050347 5.746285829 2.999638227

BASIS=3-21G

OPTIM coord=cluster regen=all gtol=0.00005 etol=0.0000001 print=3

SCF

FORCE

JUMP

Note the various optimization options: coord=cluster for cluster optimization (with the individual
hydrogen molecules separated by $molecule in the geometry input; regen=all for regenerating the
coordinates at every optimization cycle; and reduced values of gtol and etol for tight convergence. The
default distance cutoff of 5Å is used for determining the intermolecular bonding.
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12. RHF/3-21G Optimization of CO Adsorbed on Model Si Surface

TEXT= RHF/3-21G CO adsorbed on model Si surface

GEOM=PQS

Si -1.223460 0.000000 -0.337432

Si 0.611730 1.059547 -0.337432

Si 0.611730 -1.059547 -0.337432

Si 0.000000 0.000000 -2.020958

$molecule

C 0.000000 0.000000 1.915467

O 0.000000 0.000000 3.117787

BASIS=3-21G

OPTIM coord=surface cutoff=3.0 print=4 file=surface.opt0

SCF

FORCE

JUMP

Contents of user file surface.opt0:

$surface

fixed all

$endsurface

In this example, CO is being adsorbed onto a model silicon surface consisting of a top layer of 3 Si
atoms forming an equilateral triangle, and a bottom “layer” of a single Si atom below the mid-point
of the triangle. The whole system has C3v symmetry with all Si atoms of the surface frozen. As with
constraints (example 4) the contents of the file surface.opt0 could have been embedded directly into the
input file immediately following the OPTIM command.
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13. B3LYP/3-21G Cartesian Optimization of 1,3,5-trifluorobenzene With
Force Field Preoptimization and Hessian

%MEM=2000000

TEXT=1,3,5-trifluorobenzene Force Field preoptimization + Hessian

GEOM=TX92

C 0.695062606 1.203883748 0.000000000

C 1.389792019 0.000000000 0.000000000

C 0.695062606 -1.203883748 0.000000000

C -0.695062606 -1.203883748 0.000000000

C -1.389792019 0.000000000 0.000000000

C -0.695062606 1.203883748 0.000000000

F 1.359947507 -2.355498178 0.000000000

F -2.719895015 0.000000000 0.000000000

F 1.359947507 2.355498178 0.000000000

H 2.469685167 0.000000000 0.000000000

H -1.234842583 -2.138810094 0.000000000

H -1.234842583 2.138810094 0.000000000

OPTIM

FFLD print=4

JUMP

FFLD print=1 HESS

BASIS=3-21G

OPTIM print=3 coord=cart

SCF DFTP=B3LYP

FORCE

JUMP

Here we have a force field preoptimization on 1,3,5-trifluorobenzene followed by a full force field Hessian
calculated at the optimized force field geometry before starting an ab initio optimization which will use
Cartesian coordinates. The print flag is set during the force field optimization so that it will print out
all the force field parameters and all energy terms (stretching energy, bending energy etc. . . ) at each
optimization cycle.
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14. RHF/6-31G* Geometry Optimization of Water Using Pople-type Input

# RHF/6-31G* OPT ! ---- Route section

Standard 6-31G* optimization of water ! ---- Title

0 1 ! ---- Charge and multiplicity

O

H 1 L1

H 1 L1 2 A1

L1 1.0

A1 105.0

15. Methane Optimization Plus Numerical Frequencies (Pople Style Input)

#P BLYP/6-31G* OPT FREQ GEOM=CART

Methane geometry optimization + numerical frequencies

0 1

C 0.0000000 0.0000000 0.0000000

H 0.6293118 -0.6239118 0.6239118

H -0.6293118 0.6239118 0.6239118

H 0.6293118 0.6239118 -0.6239118

H -0.6293118 -0.6239118 -0.6239118

16. Water 6-31G* RHF Optimization Followed by MP2 (Pople Style)

# RHF/6-31G* OPT MP2

Standard 6-31G* optimization of water + MP2

0 1

O

H 1 L1

H 1 L1 2 A1

L1 1.0

A1 105.0

This shortened input style will be familiar to users of programs such as Gaussian.
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17. BPW91/VDZP Optimization of H2O2 With Numerical Frequencies In-
cluding Polarizability Derivatives for Raman Intensities

TEXT= H2O2 optimization + frequency including polarizability derivatives

GEOM=ZMAT

O

O 1 L1

H 1 L2 2 A1

H 2 L2 1 A1 3 D1

VARIABLES

L1 1.4

L2 1.0

A1 105.0

D1 120.0

BASIS=vdzp_ahlrichs

OPTIM

SCF DFTP=BPW91 THRE=6.0

FORCE

JUMP

NUMHESS fdstep=0.02 --------

GEOM NOORIENT PRINT=1 | Numerical Hessian

SCF DFTP=BPW91 THRE=6.0 | Loop

FORCE |

JUMP --------

GEOM print=1 --- additional geometry to restore symmetry

SCF DFTP=BPW91 THRE=6.0 --- restore energy at optimized geometry

FORCE --- ditto restore gradient

NUMPolar dipd pold --------

GEOM noorient print=1 | Numerical polarizability

SCF DFTP=BPW91 THRE=6.0 | derivatives Loop

FORCE |

JUMP --------

GEOM print=1 --- additional geometry to restore symmetry

FREQ --- will include both IR & Raman intensities
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18. RHF/6-31G* HF + H2O Interaction Energy – HF as Ghost Atoms

TITLE= HF + H2O interaction energy: HF as ghost atoms

GEOM=PQS

H 0.000000 0.000000 0.000000 0.0

F 0.920300 0.000000 0.000000 0.0

O -1.808600 0.000000 0.000000

H -2.366997 -0.756170 0.000000

H -2.366997 0.756170 0.000000

BASIS=6-31G*

SCF

This job is part of a calculation to determine the basis set superposition error (BSSE) for the HF + H2O
interaction. In this particular input, the energy of H2O is being calculated in the presence of the basis
set for HF.

19. Ethyl Radical Optimization Plus Charge/Spin Density and Electric Field
Gradient

TEXT = Ethyl Radical UBLYP/6-311G** OPT + nuclear properties

GEOM=PQS MULT=2

C -0.1341 0.7105 0.0000

C -0.0900 -0.8090 0.0000

H -0.5832 1.1308 -0.8976

H -0.5832 1.1308 0.8976

H -1.1161 -1.1991 0.0000

H 0.4255 -1.1809 -0.8891

H 0.4255 -1.1809 0.8891

BASIS=3-21G

SCF DFTP=BLYP ITER=6

BASIS=6-311G**

OPTIM

SCF DFTP=BLYP

FORCE

JUMP

PROP SPIN EFG
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20. Hydrogen Peroxide Optimization Plus 30 Steps Molecular Dynamics

TEXT= B3LYP/6-31G* Optimization + Dynamics for Hydrogen Peroxide

GEOM=ZMAT

O

O 1 L1

H 1 L2 2 A1

H 2 L2 1 A1 3 D1

VARIABLES

L1 1.4

L2 1.0

A1 105.0

D1 120.0

BASIS=6-31G*

OPTIM

SCF DFTP=B3LYP

FORCE

JUMP

GEOM SYMM=0.0

DYNA STEP=50 TEMP=800 MAXC=30 --------

SCF DFTP=B3LYP | dynamics

FORCE | loop

JUMP --------

21. Ethylene Z-Matrix Potential Scan Along C-C Bond

TEXT= C2H4 HF/3-21G Z-matrix potential scan

GEOM=ZMAT GEOP

C

C 1 L1

H 1 1.0 2 120.0

H 1 1.0 2 120.0 3 180.0

H 2 1.0 1 120.0 3 180.0

H 2 1.0 1 120.0 5 180.0

VARIABLES

L1 1.2

BASIS=3-21G

SCAN ZMAT L1 FROM 1.2 1.5 0.05 --------

GEOM=ZMAT print=1 | potential scan

SCF | loop

JUMP --------
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22. Ethylene Optimized Potential Scan Along C-C Bond

TEXT= C2H4 HF/3-21G optimized potential scan

GEOM=ZMAT GEOP

C

C 1 L1

H 1 1.0 2 120.0

H 1 1.0 2 120.0 3 180.0

H 2 1.0 1 120.0 3 180.0

H 2 1.0 1 120.0 5 180.0

VARIABLES

L1 1.2

BASIS=3-21G

SCAN stre 1 2 FROM 1.2 1.5 0.05 -------

OPTIM ------- |

SCF | optimization | potential scan

FORCE | loop | loop

JUMP ------- |

JUMP -------

Note the order of the commands: the optimization loop is inside the potential scan loop. This job will
scan the C-C distance and optimize the molecular geometry at each scanned distance. The optimization
will be carried out in delocalized internals.

23. H2CO ⇀↽ H2 + CO Cartesian Reaction Path

TEXT H2CO <---> H2 + CO reaction path search

GEOM=PQS GEOP

c -0.48011661324879 -0.05270447746945 0.00000000000000

o -0.68486418742763 -1.21833101973701 0.00000000000000

h 1.18428634708622 0.33221463198601 0.00000000000000

h -0.01930554640980 0.93882086522045 0.00000000000000

BASIS=6-31G**

PATH coord=cart sign=+1 print=3 ITER=10 ------

SCF DFTP=BLYP | reaction path

PATH | loop

FORCE |

JUMP ------

A reaction path search downhill from the transition state. The input geometry must be that of the
transition state at the level of theory being used; additionally the exact transition state Hessian matrix
must be available on the .hess file.
Here the path will be defined in Cartesian coordinates with the initial step being along the negative
Hessian eigenmode (the mode corresponding to the negative eigenvalue) in a positive sense (i.e., exactly
as output from the Hessian diagonalization – to search downhill in the opposite direction repeat this job
with sign=-1). Ten points on the reaction path will be found (in addition to the initial transition state
geometry).
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24. HCN ⇀↽ HNC Z-matrix Reaction Path

TEXT HCN <--> HNC reaction path search

GEOM=ZMAT

C

N 1 L1

H 1 L2 2 A1

VARIABLES

L1 1.191655

L2 1.188583

A1 71.6011

BASIS=6-31G**

PATH coord=zmat print=3 sign=-1 ITER=10

GEOM=ZMAT print=1

SCF DFTP=B3LYP

PATH

FORCE

JUMP

25. Water Dual Basis MP2

%MEM=6

TITLE= H2O dual basis MP2

GEOM=PQS

O 0.0 0.0 0.0

H 0.0 0.8 0.6

H 0.0 -0.8 0.6

BASIS=3-21G

SCF ITER=5

BASIS=6-311G(d,p)

SCF LOCA=PIPEK

MP2 ! --- conventional MP2 with 6-311G** basis

BASIS=6-311G(3df,3dp) ! --- larger basis must be an extension of smaller

GUESS=READ

MP2 DUAL MAXDisk=50 ! --- dual basis MP2; 6-311G** for SCF

SCF LOCA=PIPEK ! 6-311G(3df,3dp) for MP2

MP2 ! --- conventional MP2 with 6-311G(3df,3dp)
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26. QM/MM Geometry Optimization on SeP(CH3)3

TEXT= Test of new QM/MM module

GEOM=PQS SYMM=0.005 BOHR

se .00000000000000 .00000000000000 .00000000000000

p 3.98883557319641 .00000000000000 .00000000000000

$molecule

c 5.30083513259888 2.72307753562927 -1.50575280189514

c 5.32141399383545 .00000000000000 3.09815073013306

c 5.30085372924805 -2.72307753562927 -1.50573432445526

h 7.38374853134155 2.66850209236145 -1.37349081039429

h 4.63818359375000 4.45043897628784 -.55669420957565

h 4.76076984405518 2.78649663925171 -3.48898339271545

h 7.41268062591553 .00000000000000 2.96388578414917

h 4.73644876480103 -1.68607091903687 4.13668775558472

h 4.73643016815186 1.68607091903687 4.13668775558472

h 7.38376760482788 -2.66850209236145 -1.37347209453583

h 4.63822126388550 -4.45043897628784 -.55667573213577

h 4.76078891754150 -2.78649663925171 -3.48896479606628

OPTIM QMMM print=3

SEMI NOGUESS print=3 ! ----- MM part: PM3 calculation on full system

QMMM print=3 ! ----- defines model system by adding link atoms

SEMI NOGUESS print=3 ! ----- MM part: PM3 calculation on model system

QMMM ! ----- prepares for QM part

BASIS=STO-3G

SCF LVSH=3.0 ! ----- QM part: SCF calculation on model system

FORCE

QMMM ! ----- restores full system

JUMP

In this example, the Se=P part of SeP(CH3)3 will be treated quantum mechanically (RHF/STO-3G)
and the methyl groups are all treated semiempirically (PM3). Note the use of the $molecule designator
to separate the QM (upper) from the MM (lower) part of the system. A higher than normal print flag is
set to provide more detail in the output file.
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27. Methanol Geometry Optimization Plus Analytical Frequencies

%MEM=9

TEXT= Methanol RHF/DZP optimization + analytical frequencies

GEOM=ZMAT

C

O 1 L1

H 1 L2 2 A1

H 1 L3 2 A2 3 D1

H 1 L3 2 A2 3 -D1

H 2 L4 1 A3 3 180.0

VARIABLES

L1 1.4

L2 1.08

L3 1.08

L4 1.0

A1 109.5

A2 109.5

A3 108.0

D1 120.0

BASIS=DZP_dunning

OPTIM

SCF

FORCE

JUMP

HESS

FREQ

28. MP2/cc-pVQZ Energy for Water (Includes G-functions)

%MEM=10

TITLE= MP2/cc-pvqz for water (includes spherical g functions)

GEOM=pqs

O 0 0 0.118234

H 0 0.758161 -.472936

H 0 -.758161 -.472936

BASIS=3-21G

SCF ITER=5

BASIS=cc-pvqz

SCF THRE=5.5

MP2 THRE=10.5
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29. B3LYP/cc-pVTZ Optimization of Formaldehyde Plus NMR With WAH
Functional

TITLE= Formaldehyde B3LYP/cc-pvtz optimization + WAH NMR

GEOM=ZMAT

C

O C L1

H C L2 O A1

H C L2 O A1 3 180.0

VARIABLES

L1 1.2

L2 1.08

A1 120.0

BASIS=6-31G*

SCF DFTP=B3LYP ITER=5

BASIS=cc-pvtz

OPTIM

SCF DFTP=B3LYP

FORCE

JUMP

SCF DFTP=WAH

NMR

30. OLYP/6-311G** Optimization of CO Plus NMR With Level Shift

TITLE= CO OLYP/6-311G** optimization + NMR with level shift

GEOM=PQS

C 0.0 0.0 0.0

O 0.0 0.0 1.128

BASIS=3-21G

SCF DFTP=OLYP ITER=5

BASIS=6-311G**

OPTIM

SCF DFTP=OLYP

FORCE

JUMP

NMR LVSH=0.025
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31a. MP2/PC-2 Optimization of Hydrogen Fluoride

%MEM=10

TITLE= HF MP2/PC-2 optimization

GEOM=PQS

H 0.0 0.0 0.0

F 0.0 0.0 1.0

BASIS=pc-0

SCF ITER=5

BASIS=pc-2

OPTIM

SCF THRE=6.0 LOCA=PIPEK

MP2

FORCE

JUMP

31b. MP2-SCS/PC-2 Optimization of Hydrogen Fluoride

%MEM=10

TITLE= HF MP2/PC-2 optimization

GEOM=PQS

H 0.0 0.0 0.0

F 0.0 0.0 1.0

BASIS=pc-0

SCF ITER=5

BASIS=pc-2

OPTIM

SCF THRE=6.0 LOCA=PIPEK

MP2 SCS

FORCE

JUMP

Two MP2 optimizations, the first using regular MP2 the second using spin-component scaled (SCS) MP2.
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32. PBE/6-311G** Optimization Plus Analytical Frequencies for NO

%MEM=9

TITLE= NO PBE/6-311G** optimization + analytical frequencies

GEOM=PQS MULT=2

N 0.0 0.0 0.0

O 0.0 0.0 1.128

BASIS=3-21G

SCF DFTP=PBE ITER=5

BASIS=6-311G**

OPTIM

SCF DFTP=PBE

FORCE

JUMP

HESS

FREQ

33. OLYP/PC-2 Energy with FTC and Semidirect for CHFClCH2F

%MEM=30 CORE=10

TITLE= CHFClCH2F OLYP/PC-2 FTC + semidirect

GEOM=PQS

c -0.657640 -0.119772 -0.174228

cl -0.670475 1.644447 -0.173545

h 1.167983 -0.241420 -1.034052

f -1.342668 -0.619081 1.033700

h -1.173453 -0.461608 -1.035296

c 0.655721 -0.585532 -0.173024

f 1.342668 -0.089308 1.035296

h 0.663109 -1.644447 -0.170884

BASIS=3-21G

SCF DFTP=OLYP ITER=6

BASIS=pc-2

SCF DFTP=OLYP SEMI PWAVE

POP

Because of the nature of the basis set, the FTC method is faster than the standard all-integral algorithm
for this calculation, even for such a relatively small system.
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34. BVP86 Optimization Plus Frequency for HCl in gas phase Plus in Water
Using COSMO

%MEM=9

TITLE= HCl BVP86/svp_ahlrichs opt + freq + COSMO

GEOM=PQS

H 0.0 0.0 0.0

Cl 0.0 0.0 1.4

BASIS=svp_ahlrichs

OPTIM

SCF DFTP=BVP86

FORCE

JUMP

HESS

FREQ

COSMO SOLV=WATER

OPTIM

SCF DFTP=BVP86

FORCE

JUMP

NUMHESS fdstep=0.02

GEOM NOORIENT print=1

SCF DFTP=BVP86

FORCE

JUMP

GEOM print=1

FREQ

COSMO OFF

SCF DFTP=BVP86

FORCE

Here we are first carrying out a standard optimization plus vibrational analysis of HCl (i.e., in the gas
phase), followed by an optimization using the COSMO solvation model with water as the solvent. Ana-
lytical second derivatives are not available with COSMO, so the Hessian matrix is calculated numerically.
At the end of the calculation COSMO is switched off and a single-point energy plus gradient are computed
to determine the energy of the COSMO optimized geometry and the residual forces in the gas phase at
the COSMO-optimized geometry.
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35. RHF/CEP-121 Optimization, Frequency and NMR for Ethanol

TEXT= ethanol ecp test job cep basis

GEOM=PQS GEOP

C -1.282208929 -0.260589603 0.015650763

H -1.338952086 -0.842127894 0.945243893

C -0.004407982 0.567846618 -0.032066673

H -1.331051729 -0.955863284 -0.834513160

H -2.163200295 0.394178188 -0.037210856

H 0.022643530 1.177808866 -0.950049011

H 0.045402298 1.252220956 0.824503097

O 1.191141650 -0.242010134 0.059924695

H 1.189850477 -0.846145158 -0.703537329

BASIS=cep-121 print

OPTIM

SCF

FORCe

JUMP

HESS

FREQ

NMR

A standard optimization of ethanol (no symmetry) using an ECP basis set. An analytical Hessian (plus
vibrational analysis) and NMR are done at the optimized geometry, both using the ECP basis.

36. MP2/6-311G** for H2 Dimer With Ghost Atoms and Symmetry

TITLE= H2 dimer ghost atoms with symmetry

GEOM=PQS

H 0.36 1.00 0.0

H -0.36 1.00 0.0

H$ 0.36 -1.00 0.0 0.0

H$ -0.36 -1.00 0.0 0.0

BASIS=6-311G** NEXT

FOR H$ BASIS=6-311G**

SCF THRE=6.0 LOCA=PIPEK

MP2

This shows how to use ghost atoms and still utilize symmetry. If the special $ symbol were not used on
the ghost H atoms, then the job would stop, complaining that symmetry (D2h) was being broken, as the
charges on all the hydrogen atoms are not the same. Giving the ghost H atoms a different symbol (H$
instead of H) allows the program to recognize a different type of hydrogen atom, lowers the symmetry to
C2v and enables the job to run.
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37. RHF/3-21G Optimization, Frequency, NMR and VCD for CHFClBr

TEXT=Test of VCD

GEOM=PQS

c -0.03155715494684 0.05784758579888 0.13730601371952

f -0.03948600303304 1.39983830048394 0.12931336665829

cl 1.64766123566997 -0.53244336383942 0.17971931585716

h -0.55725000123065 -0.32537841681946 1.00930665044019

br -1.01936807645943 -0.59986410562394 -1.45564534667514

BASIS=3-21G

OPTIM

SCF THRE=6.0

FORCE

JUMP

NMR VCD

HESS

FREQ

Note the order of the key words for the VCD analysis.

38. B97/3-21G Optimization, Frequency and Full Population Analysis on
Cyclopropane

%MEM=5 CORE=5

TEXT=cyclopropane Test Job

GEOM=PQS SYMM=0.005

c 0.43212770207642 0.74846713535435 0.00000000000000

h -1.44959369213872 0.00000000000000 -0.90285062495995

h 0.72479684606936 -1.25538496255781 0.90285062495995

h 0.72479684606936 1.25538496255781 -0.90285062495995

h 0.72479684606936 1.25538496255781 0.90285062495995

c -0.86425540415284 0.00000000000000 0.00000000000000

h 0.72479684606936 -1.25538496255781 -0.90285062495995

h -1.44959369213872 0.00000000000000 0.90285062495995

c 0.43212770207642 -0.74846713535435 0.00000000000000

BASIS=3-21G

OPTIM

SCF DFTP=B97 SEMI

FORCE

JUMP

HESS

FREQ

POP=FULL
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39. Multiple constraint optimization of 2-aminopropionic acid

TITLE= 2-aminopropionic acid Multiple constraint test

GEOM=PQS

H -0.033086 1.169295 1.037328

N -0.070432 0.176872 1.465463

C -0.073029 -0.851293 0.402646

C 1.154853 -0.742968 -0.466683

O 1.948633 0.177758 -0.363854

C -1.347330 -0.713890 -0.468542

H 0.774958 0.039270 2.126502

O 1.328319 -1.713145 -1.360929

H 2.124181 -1.552627 -1.853694

H -2.244634 -0.778874 0.165780

H -0.079658 -1.845221 0.882325

H -1.351803 0.257040 -0.987249

H -1.388230 -1.516545 -1.221647

OPTImize PRINT=3

$fix

2 XYZ

3 XYZ

$endfix

$constraint

bend 1 2 7 110.0

#composite

stre 3 4

stre 3 6

#endcomposite

$endconstraint

SEMI=PM3

JUMP
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Chapter 6
Running Jobs

PQS comes with a series of utilities that facilitates the submission and handling of calculations on Linux,
Mac and Windows environments. First of all, PQS is now available with a fully functional GUI, PQSMol,
which provides a convenient way of building molecules, preparing input, submitting jobs (single processor
and parallel) and visualizing the results. In addition to using PQSMol, PQS calculations can also be
launched from the command line, either using the utility scripts that are distributed with the program,
or by directly calling the PQS executables. Jobs can be ran interactively or in batch mode.

The functioning of PQSMol is described in a separate manual. This chapter covers the topic of running
PQS jobs using the command line interface to the program.

6.1 Single Processor Jobs

The best way to submit PQS jobs is via the pqs (pqs.bat on Windows) wrapper script located in the
PQS ROOT directory. In a terminal window on Linux and Mac, or in a Command Prompt window under
Windows, simply type

pqs jobname

where jobname is the name of the input file without the .inp extension. On Linux and Mac, a job can
be ran in the background by terminating the command line with an ampersand (&):

pqs jobname &

If the extension of the input file is not the default .inp, you have to type the full input file name, e.g.

pqs jobname.ext
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where the input file extension is .ext. Besides the .inp extension, a commonly used input file extension
is .com, used for Pople-style input files. The pqs script assumes that the input file has one of the following
four extensions: .inp, .com, .pqs or .input. The program will function for other extensions, but it may
not save any old output files correctly (see below).

The Pople style input converter produces an intermediate input file jobname.pqs which can be edited by
hand and ran with the command

pqs jobname.pqs

The (detailed) output of the program will be in the file jobname.out; a concise output can be found in
jobname.log. The pqs script checks whether there already is a file jobname.out, and, if so, renames the
old file to jobname.old. If jobname.old already exists, the output will be appended to it.

All files produced by running PQS using the pqs script will be given the prefix jobname; thus the
control file will be called jobname.control, the coord file jobname.coord and so on. On successful job
completion, all files necessary for a restart, or to resubmit the job at a higher level of theory, will be
saved in the directory from which the job was submitted. On Linux and Mac, these files can be collected
into a job archive using the archive script. Simply typing archive jobname at the command prompt
will archive and compress all necessary files into a tar file jobname.tgz. Files can be restored by typing
tar -xvzf jobname.tgz. The archive script is not yet implemented for Windows.

Unwanted files can be removed using the tidy script (tidy jobname). This is recommended before a
job is resubmitted after a failed run, as some modules, in particular the optimizer, may pick up incorrect
information from the intermediate files. If a job crashes or is deleted manually, other modules (e.g., the
force field, the scan) may also show this problem. If a job fails to run for no apparent reason, please try
first to use tidy. The tidy script will delete all files with the base filename jobname except the input
file (.inp), output file (.out), the summary log file (.log) and the old outputs (.old). It will also delete
files in the PQS SCRDIR directory.

Tip: On Mac systems the PQS tidy command has been renamed pqs tidy due to
name conflict with an existing command.

Note: Using tidy without an argument will assume the argument pqsjob. Typing
tidy all will delete all PQS files in both the current and scratch directories. Make sure
you DO NOT enter the tidy all command if there are PQS jobs currently running on
your system (including parallel jobs), as this will cause any running job to crash.

An alternative to using the pqs job script is submission “by hand”, e.g.

${PQS_ROOT}/pqs.x jobname[.ext]
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for Linux and Mac, and

"%PQS_ROOT%"\pqsv3.3.exe jobname[.ext]

for Windows.

Note: In case of submission “by hand”, you have to make sure the environment
variables PQS ROOT and PQS SCRDIR are explicitly defined, especially if their location is
different from the default (see Chapter 2), otherwise the program may generate an error.

Finally, under Linux or Mac the program will accept the syntax

${PQS_ROOT}/pqs.x < input-file > output-file

In this case all files created by PQS (other than the output file, which has been specifically named) will
be given the prefix pqsjob. DO NOT submit different jobs using this syntax at the same time in the
same directory – this will cause severe filename conflicts. Different jobs can be safely submitted from the
same directory using the pqs job script; however, you should make sure that any files explicitly named in
the input (e.g. by the SCR option of the FILE command, see page 31) are different for different jobs.
As scratch files are usually not explicitly defined, generally this is not a limitation.

Note: If the job name/input file contains spaces, it must be quoted using double
quote characters, as in pqs "molecule one". This syntax can be used with or without
the wrapper script. On Linux and Mac, one can also use the form pqs molecule\ one.
If the jobname contains spaces, then all the files produced by PQS will contain spaces in
their names too. We strongly discourage the practice of including spaces in file names,
as it easily leads to confusion.

6.2 Parallel Jobs

This section explains how to run PQS in parallel under Linux or Mac. A parallel PQS version for Windows
is under development, but it is not yet available.

The most computationally intensive parts of the PQS ab initio program package are implemented for
parallel execution using the message-passing paradigm. This coarse-grained parallelism and relatively
limited communication provide good scaling up to a few dozen processors.

Our implementation uses the SPMD (Single Program, Multiple Data) “master-slave” model for wide
applicability. The program will act as a master (driving the calculation) or as a slave depending on the
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context of the parallel execution environment. The master takes the input from the standard input; the
workers do not read the input file.

The communication interface of the program could easily accommodate any message-passing system.
Presently we have two parallel implementations available: the first using the widely used, flexible and
efficient Parallel Virtual Machine (PVM) software, and the second using the industry-standard Message
Passing Interface (MPI).

Note: In our experience, the PVM version generally provides better performance on
small clusters, and is somewhat easier to use.

There are two prerequisites for a PQS parallel run: (i)message passing software (PVM or MPI) must
be installed and configured on your system (see Chapter 2), and (ii) the user must be able to remotely
execute commands on the computational nodes that are to be involved in the calculation. The latter is
usually achieved via communication layer software like rsh or ssh. Details on how to configure these
communication software are not provided here, as they depend heavily on the local hardware and software
setup. The user is referred to the documentation of each package and to the local user guide.

Note: If you are using a PQS hardware product, the parallel environment is already
configured and ready to be used.

6.2.1 PVM

Using the PQS PVM version is the recommended way of running parallel jobs. As suggested by the
name, within PVM the calculation is ran in a virtual machine that is usually composed of a subset of
the available compute nodes. The composition of the virtual machine can be specified by the user or, in
case of batch execution, can be determined by a queue managing software.

A simple way of manually setting up a virtual machine is via the PVM console. At a terminal window
prompt, type

pvm

this will bring up the PVM console prompt (pvm>). If your host is already part of a virtual machine, the
message pvmd already running will be printed. Several commands can be typed at the console prompt,
here are some of the most useful:

• help display the list of available console commands

• conf display the virtual machine configuration
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• add <hostname> add a host to the virtual machine

• delete <hostname> delete a host

• ps display the processes running on the virtual machine

• quit exit the console leaving the virtual machine running

• reset reset the virtual machine, killing all processes currently running

• halt stop the virtual machine (killing all processes) and exit the console.

Once a virtual machine is up and running (remember to use the quit command to exit the PVM console
leaving the virtual machine active), parallel PQS jobs can be executed using the pqs script (as for the
single processor case) by typing

pqs jobname nslaves

where nslaves is a positive integer number indicating the number of slave processes to start. Omitting
nslaves, or entering a number smaller than 2, will start a single processor job.

Note: The pqs script is not meant to be used to run more than 1 job on a PVM
virtual machine. Before starting the calculation, the pqs script issues a reset command
to the virtual machine, and this has the effect of killing any job currently running on
that PVM virtual machine. The reset command is sometimes necessary to free the
virtual machine of hanging processes left by crashed jobs. If you want to run more than
1 calculation on a PVM virtual machine at the same time, the additional calculations
have to be submitted without using the wrapper script, as explained below.

The most efficient way of running parallel jobs is to start a slave process for each processor available in
the virtual machine. For instance: suppose we have a virtual machine composed of two hosts, n1 and n2,
each with 2 dual core processors. In this case, each host has effectively 4 CPUs, thus the total number
of processors in the virtual machine is 8. The job aspirin can be started on this virtual machine, using
8 slaves, by typing

pqs aspirin 8

Tip: For production runs, it is never a good idea to start more slaves than there are
processors available, because in such a case the worker processes will have to compete
with each other for CPU time, and this will result in an overall inefficiency of the calcu-
lation. In the case of very large jobs, on the other hand, it may be necessary to reduce
the number of slave processes, especially if the job demands a large amount of memory,
to avoid overwhelming the system resources.
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As for the single processor case, PVM parallel jobs can be ran without using the pqs wrapper script. For
instance, the job of the above example could be executed as

/usr/local/share/PQS/pqs_pvm.x -np 9 aspirin

Note: (i) the name of the PVM executable is pqs pvm.x, (ii) the full path to the
executable must be specified, and (iii) the number of processes to start is entered via
the command line option -np. The latter is the total number of processes, including the
master (in this case: 1 master + 8 slaves = 9 total processes).

As can be seen from the above example, the master process is not assigned to a processor of its own, but
it is just “overloaded” into a processor already carrying a slave. This can be done without jeopardizing
the efficiency of the job, because the master process does very little computation itself (the most compu-
tationally demanding tasks are done by the workers), moreover, when the master is computing the slaves
are idle and vice versa. Thus master and workers are never in direct competition for CPU time.

In the examples discussed until now, we have assumed that the PVM virtual machine was already set up
before starting the PQS job. If this is not the case, PQS has the capability of starting and configuring
the virtual machine itself. This feature might be necessary in case of batch execution, when the batch
environment does not initialize the PVM virtual machine. This capability is accessed by defining a
“machine file” containing the list of hosts that are to be part of the virtual machine (the format of the
machine file is one host name per line), then specifying the machine file via the -f command line option
to the PQS executable.

Thus the aspirin example above could be ran, without setting up the virtual machine machine first, by
creating a machine file, say pvm.machine, containing the virtual machine composition (one host name
per line) as in

n1

n2

then entering the command

/usr/local/share/PQS/pqs_pvm.x -f pvm.machine -np 9 aspirin

Note: In order for the -f option to be effective, there must be no PVM virtual
machine running on the host where the calculation is started. If there is a virtual machine
already active, the program will use the existing setup and will ignore the -f option.
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If there is no PVM virtual machine running, and no -f option is given, the program will look for the
default machine file ${HOME}/.txhosts. If no machine file is found, the program will start a virtual
machine including only the current host.

Finally, the machine file can be specified also with the wrapper script, as in

pqs aspirin 8 -f pvm.machine

Before starting the job, the program prints out information about the virtual machine configuration. This
can be found at the beginning of the output file, right before the echoing of the job input. For instance:

The existing virtual machine is used.

Master process on: slater

2 slaves working on your job

Slave on: slater

Slave on: slater

In this example, the program has used an existing virtual machine composed of just one host (slater)
and has started the master process and two slaves on it. The same job, this time started with the -f

pvm.machine option, will produce

The virtual machine setup is based on: pvm.machine

Master process on: slater

2 slaves working on your job

Slave on: slater

Slave on: slater

6.2.2 MPI

The second parallel implementation of PQS uses the MPI parallel environment. MPI is the de facto
standard for communication among processes for which there exist many implementations, both open
source and commercial. Two main specifications of the MPI model are available: MPI-1 and MPI-2, and
PQS is available for both frameworks.
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Note: Although all the MPI implementations adhere to the same application pro-
gramming interface, the underlying details of each specific MPI flavor differ, and this
might create portability issues. The PQS MPI executables that are currently available at
the PQS web site are statically linked against the MPICH libraries (MPICH1 or MPICH2,
see www-unix.mcs.anl.gov/mpi/mpich) for communication over Ethernet interfaces, and
there is no guarantee that they will work with a different MPI implementation, or for
different hardware. Special combinations of MPI flavors/hardware might need an ad hoc
version of the program. Contact the PQS customer support (tech@pqs-chem.com) for
enquires.

The remainder of this section provides instructions on how to run the PQS MPI parallel version. These
instructions apply to the MPICH environment and are based on the typical setup that can be found on a
PQS hardware system like the QuantumCubeTM. Different MPI implementations or different local setup
might require changes to the commands and procedures described here. In these cases, the user should
consult the local MPI guide.

Note: If you are using a PQS hardware system, only one of the two MPICH envi-
ronments described below, most likely MPICH2, might be active on your machine.

MPICH1

Running the MPICH1 version of PQS is similar to running the PVM version using a “machine file” to
specify the hosts where the calculation is to be ran. The composition of the machine file can be specified
by the user, or can be decided by queuing software.

Following the example discussed in the PVM section, say we want to execute the job aspirin using
8 slave processes, 4 running on the host n1 and 4 on n2: the first step is to prepare a machine file,
mpi.machine, containing the list of hosts where to run the processes, one line per process. In our case
we want to start a total of 9 processes (1 master + 8 workers), thus the mpi.machine file should look
like this

n1

n2

n1

n2

n1

n2

n1

n2

n1
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Tip: MPI will start one process for each host specified in the machine file, starting
with the master (rank 0) followed by the slaves. Given a list of hosts (n1 and n2 in this
case), the best way of ensuring a good load balance is to fill the machine file in round
robin fashion, going through the available hosts one at a time and restarting from the
beginning as necessary.

Once the machine file is setup, the MPI calculation is started using the mpirun command. This command
takes as arguments the number of processes to start (option -np), the machine file (-machinefile), and
the program to be executed followed by the arguments of the latter:

mpirun -np 9 -machinefile mpi.machine /usr/local/share/PQS/pqs_mpi1.x aspirin

Note: (i) the name of the MPICH1 executable is pqs mpi1.x. (ii) the full path to
the executable must be specified. (iii) the number of processes to start is entered via the
mpirun option -np. The latter is the total number of processes, including the master
(in this case: 1 master + 8 slaves = 9 total processes). (iv) the order of the options
is important: -np and -machinefile are options of the mpirun command, thus they
must be entered before specifying the MPI executable to be ran (pqs mpi1.x) and its
arguments.

If the machine file is not specified, mpirun will look for the default machine file machines.LINUX usually
located in the MPICH1 installation directory (for instance: /usr/local/share/mpich1/share/).

The above example illustrates the detailed command line for starting an MPICH1 calculations, but an
easier way to run the job is to use the pqs wrapper script:

pqs aspirin 8 -f mpi.machine -mpi1

The -mpi1 option tells the script to start a parallel job using the PQS MPICH1 executable. The other
arguments are the same as in the PVM case: job name (aspirin), number of slaves (8) and machine file
(-f mpi.machine).

MPICH2

Running parallel jobs using MPICH2 is very similar to using PVM: also in this case a parallel environment
needs to be explicitly setup before starting the job. The setup can be done interactively by the user, or
can be left to a batch queue system. The parallel environment is created by running a copy of the MPD
daemon on each host belonging to it.

The various instances of the MPD daemon use a form of authentication to communicate with each other.
This authentication is provided by a “secret word” that is read from the configuration file .mpd.conf
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(this is a hidden file) located in the user home directory of each host included in the MPD ring. The
secret word is specified by a line similar to

MPD_SECRETWORD=w6YdorT0

where the part following the = sign is the actual secret word (you might want to use a different one).
The .mpd.conf file has to be avaliable on each host running a MPD daemon, it has to be readable and
writable only by the user who owns it (unix mask 600), and, of course, the secret word has to be the
same on all hosts. In the case of a cluster, where the user home directories are shared on all nodes, this
file needs to be setup only once.

Here is a simple bash procedure that can be used to setup the .mpd.conf file (substitute the secret word
with one of your liking):

cd ${HOME}

echo "MPD_SECRETWORD=w6YdorT0" > .mpd.conf

chmod 600 .mpd.conf

Note: If you are using a PQS hardware system, the .mpd.conf file should already
have been created, although you might want to edit it to change the secret word value.

As in the previous cases, the composition of the MPD ring is specified by a machine file. Returning to
our familiar aspirin example, the MPICH2 machine file, say mpd.machine, will look like the following:

n1:4

n2:4

There is one line for each host that is to be part of the ring, containing the host name and, after a colon,
the number of processors belonging to the host.

The MPD daemon is started by the command mpdboot:

mpdboot --totalnum=2 --file=mpd.machine --ncpus=4 --rsh=rsh

here --totalnum=2 indicates the total number of MPD daemons to start (e.g. the number of hosts in the
MPD ring, 2 in our example), --file=mpd.machine identifies the machine file, --ncpus=4 is to tell MPD
the number of processors of the current host (the one on which the command is typed), and --rsh=rsh

specifies the command to use for remote execution, rsh in our example. The latter is system dependent:
rsh is the appropriate value for a QuantumCubeTM, but other systems might require ssh, depending on
the local configuration. A short form of the above line is
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mpdboot -n 2 -f mpd.machine --ncpus=4 -r rsh

The mpdboot command will always start one occurrence of the MPD daemon on the host where the
command is entered, and the number of CPUs of that host has to be specified on the command line by
the option --ncpus. If there is an entry for that same host in the machine file, that entry will be ignored.
Thus in our example, assuming that we enter the mpdboot command on the host n1, the entry n1:4 of
the mpd.machine file will be ignored. Specifying the correct number of CPUs available for each host,
both in the command line and in the machine file, is important for achieving a good load balancing of
the calculation.

Tip: The configuration of a running MPD ring can be displayed with the command
mpdtrace. The ring can be stopped by typing mpdallexit.

Once the MPD ring is up and running, the aspirin job can be started using the command mpiexec:

mpiexec -np 9 /usr/local/share/PQS/pqs_mpi2.x aspirin

Note: (i) the name of the PQS MPICH2 executable is pqs mpi2.x, (ii) the full path
to the executable must be specified, (iii) the number of processes to start is given as an
argument to the mpiexec command (-np option), and (iv) the machine file does not
have to be specified here.

The pqs wrapper script supports MPICH2 parallel jobs via the -mpi2 option, thus instead of the above
command one could simply type

pqs aspirin 8 -mpi2

6.3 Batch Job Execution

This section covers the topic of running PQS in a batch queue environment. A job queuing system is
usually the most efficient way of utilizing the resources of a computer cluster, especially if there are several
users that are running large jobs at the same time. A batch queue ensures an optimal load balance of
the system and a fair share of the computational resources between the different users. In many large
computer cluster, the batch execution is the only environment where the submission of large parallel jobs
is allowed.

The commands for running PQS on a batch queue are essentially the same as the one discussed in the
previous two sections. The only difference is that in case of batch execution the commands, instead of
being typed at the command prompt, are collected into a script that is then submitted to the queue.
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The first part of this section describes the use of the Sun Grid Engine (SGE), which is the job queuing
utility available in the PQS hardware systems like the QuantumCubeTM. Then general guidelines will be
given that can be applied to other batch systems as well.

6.3.1 Sun Grid Engine

The Sun Grid Engine (SGE) is the queuing software available on all PQS hardware systems. This
software has been released by SUN as part of their “open source” initiative, and, in its workings, bears
many similarities to other batch queue systems. SGE supports several parallel environments, including
PVM and MPI.

The basic commands are:

• qstat -f displays the current status of the queue

• qsub <jobscript> submits a job to the queue

• qdel <jobid> deletes a job from the queue

The submission and monitoring of jobs can also be controlled via a graphical interface to SGE that can
be accessed by typing the command qmon at the Linux prompt.

The simplest way to submit PQS jobs to the SGE queue is via the pqs sge script that comes with the
PQS distribution. This script works in the same way as the pqs wrapper script described previously. The
difference is that pqs sge, instead of running the job interactively, will create a job script “on the fly,”
and will submit it using the qsub command.

The detailed usage is

pqs_sge jobname

for a single processor job, and

pqs_sge jobname nslaves [-pvm | -mpi1 | -mpi2]

for a parallel job. As for the interactive case, jobname is the name of the PQS input file without the
.inp extension, nslaves is the number of slaves to start in the calculation (a positive integer number),
and the parallel environment to be used can be specified by one of the options -pvm, -mpi1 or -mpi2.
The default parallel environment, if none of the previous options is present, is PVM. In case of a single
processor job (when nslaves is omitted, or it is less than 2), the parallel environment specification is
meaningless and is ignored.
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Note: On a PQS hardware system, the recommended environment for PQS parallel
batch jobs is PVM (the default). SGE should be configured to support also one of the
MPI environments, most likely MPICH2.

As with the interactive case, if the job input file does not end in one of the default extensions (.inp,
.input, .com, .pqs), its entire name, including the extension, must be entered as an argument of the
pqs sge script.

In alternative to the pqs sge automatic submission script, a PQS job can be submitted “by hand” by
creating a suitable job script and entering the qsub command. Here we give some examples of job scripts
for the the SGE queue. These are the same as those generated “on the fly” by the pqs sge command.

Note: The following examples are based on the typical setup of a PQS
QuantumCubeTM, they might need some customization on a different computer sys-
tem.

Single Processor Jobs

We start with an example of a single processor SGE job script. Here we give the script test1.sge to run
the PQS job “test1” in single processor mode. The job is submitted by typing qsub test1.sge.

#$ -S /bin/bash

#$ -N test1

#$ -cwd

#$ -v PATH,TMPDIR

#$ -v PQS_ROOT=/usr/local/share/PQS

#$ -v PQS_SCRDIR=/scr/pqs1

#$ -v PQS_BASDIR=/usr/local/share/PQS/BASDIR

/usr/local/share/PQS/pqs.x test1

Commands to the queue are prefixed by #$. The first line (option -S) tells the queue to use the bash

shell to interpret the commands, then follows the specification of the job name (option -N). The name
given here (test1) is the name that will appear when the status of the job is checked with the command
qstat -f, and will also be the prefix for the SGE job output and error files (these are distinct from the
files produced by the PQS calculation). If the SGE job name is not specified, a default value will be
generated by the queue.

The next line (-cwd) tells the queue to use the current directory as working directory for the job. This
means that the PQS input file, test1.inp must be located in the current directory. The PQS output
and checkpoint files will be created there too.

Parallel Quantum Solutions 147



6.3 Batch Job Execution

Some environment variables are then exported to the job (-v option), in particular PQS ROOT, PQS SCRDIR

and PQS BASDIR.

Note: This example assumes that the job is to be ran by the user “pqs1”. In case
the job is submitted by a different user, the line defining the PQS SCRDIR location must
be edited and the user name changed.

The last line is the actual command for starting the calculation.

PVM Jobs

The following script, aspirin pvm.sge, can be used to submit the parallel job aspirin to run with 8
slaves using the PVM environment.

#$ -S /bin/bash

#$ -N aspirin

#$ -cwd

#$ -pe pvm 8

#$ -v PATH,TMPDIR

#$ -v PQS_ROOT=/usr/local/share/PQS

#$ -v PQS_SCRDIR=/scr/pqs1

#$ -v PQS_BASDIR=/usr/local/share/PQS/BASDIR

/usr/local/share/PQS/pqs_pvm.x -np 9 aspirin

By comparison to the single processor case, one can see that we have one more command to the queue, the
-pe line. This specifies the parallel environment for the job. In this case we instruct SGE to use PVM,
and to reserve eight slots for the calculation. The SGE scheduler will decide which actual processors to
assign to the job, and will setup the PVM virtual machine accordingly. The last line starts the calculation.

Note: As for the interactive case, the total number of processes to start is one more
than the number of slaves, to allow for the master process.

MPICH1 Jobs

For the MPICH1 case, the script has to be modified as follows

#$ -S /bin/bash

#$ -N aspirin
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#$ -cwd

#$ -pe mpi 8

#$ -v PATH,TMPDIR

#$ -v PQS_ROOT=/usr/local/share/PQS

#$ -v PQS_SCRDIR=/scr/pqs1

#$ -v PQS_BASDIR=/usr/local/share/PQS/BASDIR

mpirun -np 9 -machinefile ${TMPDIR}/machines /usr/local/share/PQS/pqs_mpi1.x aspirin

Now we request the MPI parallel environment (we assume that SGE is configured to work with MPICH1).
The SGE scheduler will assign the slots to the calculation and will create a machine file in the default
location ${TMPDIR}/machines. This machine file is then used for starting the job with the mpirun

command.

MPICH2 Jobs

Finally, the appropriate script for the MPICH2 environment is

#$ -S /bin/bash

#$ -N aspirin

#$ -cwd

#$ -pe mpi 8

#$ -v PATH,TMPDIR

#$ -v PQS_ROOT=/usr/local/share/PQS

#$ -v PQS_SCRDIR=/scr/pqs1

#$ -v PQS_BASDIR=/usr/local/share/PQS/BASDIR

mpiexec -np 9 /usr/local/share/PQS/pqs_mpi2.x aspirin

In this case there is no machine file. The SGE scheduler will assign 8 processors to the job, then will
start the MPD ring accordingly. The job is ran by the mpiexec command.

6.3.2 Other Batch Environments

The procedures described in the previous section can provide the general guidelines for running PQS jobs
in batch environments other than SGE, although the actual commands might need some adaptation.

The first point is to determine which parallel environments are supported by the queuing software, in
order to choose which PQS executable to run. If a choice is possible, we recommend to use the PVM
executable.

It is also important to know whether the parallel environment is initialized by the queue system itself,
or if it is the job that has to do the initialization. In the PVM case, if the batch software does not setup
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the virtual machine, then the PQS executable has to be ran with the -f machinefile option in order to
create the virtual machine (see section 6.2.1).

Usually the queuing software will create a kind of “machine file,” specifying the hosts assigned to the job,
that can be used (possibly after some manipulation) as input for the -f option of the PVM executable,
or as machine file for the mpirun command. Sometimes this information is provided in the form of
environment variables.

In the MPICH2 case, if the batch system does not setup the MPD ring, then the job script must contain
the mpdboot command with the appropriate options (see section 6.2.2).

When using PQS on a batch system, it is always a good idea to explicitly define the PQS environment
variables. Thus, every job script should contain the lines (for bash syntax)

export PQS_ROOT=/usr/local/share/PQS

export PQS_SCRDIR=/scr/pqs1

export PQS_BASDIR=/usr/local/share/PQS/BASDIR

or some equivalent form. Be sure to modify the actual values of the variables (specifically the user name
in PQS SCRDIR) to meet your local configuration.

Finally, keep in mind that PQS follows a master-slave model, where the actual calculation is carried out
by the slaves, but the master process is needed to coordinate the job. When requesting slots from the
queue system, you should request one slot for each worker process that you intend to start, but then,
when actually executing the job, you should start one additional process to allow for the master.

6.4 Program Files

This section describes the files the PQS modules produce (first write to a particular file). Only the file-
name extension is given here; the actual file is prefixed with a <jobname> determined at job submission.
Thus, e.g., .control denotes the file <jobname>.control.

• GEOM (geometry input)

– .control this module is the first to write to the .control file

– .coord contains atomic symbols, Cartesian coordinates, atomic charges and atomic masses
format (A8,2X,5F20.14)

– .zmat z-matrix and parameter list (if z-matrix input)

– .sym contains symmetry information: point group symbol, number of atoms, number of sym-
metry operations, number of degrees of freedom, rotation matrix (relating initial to final orien-
tation), number and list of symmetry-unique atoms, symmetry operations (as 3x3 matrices),
equivalent atoms array.
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• BASIs (basis set definition)

– .basis contains basis set information: number of contracted basis functions, number of shells,
number of primitive shells, definition of basis set (function type, exponents, contraction coef-
ficients).

– .basis2 copy of .basis (for use with SCF guess using different basis).

• GUESS (SCF starting orbitals)

– .mos binary file containing initial guess alpha/closed-shell MOs

– .mob binary file containing initial guess beta spin MOs (for UHF).

• SCF (SCF and DFT iterations). Produces several temporary binary files, updates .mos/.mob files
with latest SCF orbital coefficients, may produce any of the following files, depending on the specific
job type:

– .los binary file containing localized alpha/closed-shell MOs

– .lob binary file containing localized beta spin MOs (for UHF)

– .nos binary file containing naturalized orbitals

– .potS FTC potential file (deleted in a subsequent gradient step)

– .potM ditto,

• FORCe (Gradient of the energy)

– .grad contains atomic symbols and Cartesian forces format (A8,2X,3F20.14).

• MP2 (Traditional canonical MP2 energies). Produces several (potentially very large) temporary
binary files:

– .htr half-transformed integrals

– .bins bin-sort integral files.

By default, these files are deleted upon job completion; however the .htr files will be kept if the
KEEP option is specified.

• NUMHess (Hessian – force constant – matrix from numerical differentiation of forces)

– .hess Hessian matrix in Cartesian coordinates. Format: keyword indicating Hessian type,
Hessian dimension, lower triangle, one row at a time in free format.

– .deriv dipole moment derivatives format (10X,3F20.14)

– .hesschk binary file containing data pertinent to next finite-difference step. Can be used for
restarts.

• HESS (Analytical Hessian matrix calculation). Produces several (potentially large) temporary
binary files.

– .hess Hessian matrix in Cartesian coordinates. Format: keyword indicating Hessian type,
Hessian dimension, lower triangle, one row at a time in free format.
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– .deriv dipole moment derivatives format (10X,3F20.14)

– .aat atomic axial tensors (in a VCD job). Format (10X,3F20.14).

• NUMPol (Dipole moment and polarizability derivatives via numerical differentiation)

– .deriv dipole and polarizability derivatives. Format (10X,3F20.14)

– .polchk binary file containing data pertinent to next finite-difference step. Can be used for
restarts.

• NMR (NMR chemical shifts). May produce temporary binary files.

• POP (Population analysis)

– .chelp ASCII file containing various results of the CHELP analysis.

• NBO (Weinhold’s Natural Bond Orbital analysis). Opens some internal scratch files which are
deleted on exit.

• SEMI (Semiempirical SCF calculations). Produces several temporary files which are deleted on
exit.

– .grad contains atomic symbols and Cartesian forces format (A8,2X,3F20.14).

• FFLD (Force field module)

– .grad

– .hess (optionally)

– .ffchk binary file containing details of force field parameters.

• COSMo (Solvation model). Produces several (potentially large) temporary binary files

– .cosmo ASCII file containing data for the application of COSMO-RS (COSMO for Real Sol-
vents) theory.

• OPTImize (Geometry optimization)

– .opt internal file containing optimization options

– .optchk binary file containing data pertinent to next optimization cycle can be used for restarts

– .hess approximate (updated) Hessian matrix in Cartesian coordinates. Format: keyword
indicating Hessian type, Hessian dimension, lower triangle, one row at a time in free format.

– .hprim primitive Hessian in internal coordinates (only if new delocalized internals are gener-
ated every cycle). Format: same as for .hess.

• DYNAmics (Direct Newtonian molecular dynamics)

– .trajec trajectory file.

• QMMM (Combined quantum mechanics – molecular mechanics)

– .qmmm binary file containing data pertinent to next QM/MM step. Can be used for restarts.
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• SCAN (Potential scan, including scan plus optimization)

– .scan binary file containing data pertinent to next step in potential scan. Can be used for
restarts.

• PATH (Reaction path)

– .path binary file containing data pertinent to next step in path search. Can be used for
restarts.

6.5 Restarts and Checkpoints

Files saved and available on successful job completion include:

• .control general data about the job

• .coord final geometry in Cartesian coordinates

• .sym symmetry data

• .basis basis set data

• .mos alpha spin/closed-shell SCF MOs (binary file)

• .mob beta spin SCF MOs (binary file)

• .hess Cartesian Hessian, either exact or approximated depending on the type of job (see previous
section)

• .deriv dipole moment derivatives (from NUMHESS)

• .zmat final Z-matrix (Z-matrix optimization only)

This collection of files constitutes the checkpoint or data archive for that job. Much of this data can be
reused for, e.g., running a similar job on the same system at a higher level of theory or with a different
basis set.

6.5.1 Geometry Optimization

A typical example is reoptimizing a molecule at a higher level of theory. Assume you have the data
archive for a RHF/3-21G optimization of a particular molecule and you want to reoptimize the geometry
at B3LYP/6-31G*.

Input would be as follows:
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FILE save=molecule

TEXT= B3LYP/6-31G* optimization from RHF/3-21G archive

GEOM=read ! -------------- get geometry from old <coord>

BASIS=6-31G*

GUESS=READ ! -------------- use old MOs as initial guess

OPTIM ! -------------- will automatically pick up any

GUESS=READ ! pre-existing .hess file

SCF dftp=b3lyp

FORCE

JUMP

The following files need to be available in the directory in which the new job is being ran: .control,
.coord, .basis, .mos, .hess.

Geometry optimizations can easily be restarted from the .optchk file following job crashes. This is not
necessarily the case if the job aborts with an error message.

The OPTIMIZE module is set up to automatically read data from the .optchk file if one exists. To
restart a job that crashes somewhere in the main optimization loop use

TEXT= Restart following job crash

GEOM=read ! -------------- must use current geometry

BASIS=6-31G*

OPTIM ! -------------- will automatically pick up data

SCF dftp=b3lyp ! from .optchk file

FORCE

JUMP

Tip: The original input geometry (if one was given in the input file) must be removed
and either replaced with the current geometry or (better) by a direct read from the latest
.coord file (as shown above).

Note: The geometry optimization restart is different from earlier versions of PQS
(3.1 and earlier) in that there is no longer any need to add SCF and FORCE cards before
the OPTIM card as was previously the case.

6.5.2 Numerical Hessian

Frequency runs that crash in the numerical Hessian loop can be restarted from the .hesschk file. The
restart procedure is very similar to the restart of a geometry optimization from the .optchk file. To
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successfully restart you need the files .control, .coord and .hesschk. Here is an example:

Initial job

TEXT= Numerical Hessian + frequencies on previously converged geometry

GEOM=pqs file=molecule.tex

BASIS=6-31G*

GUESS

NUMHESS fdstep=0.02

GEOM noorient print=1

GUESS=READ

SCF dftp=b3lyp

FORCE

JUMP 5

GEOM print=1

FREQ

Restart job

TEXT= Numerical Hessian + frequencies Restart

GEOM=read noorient ! --------------- read in geometry on loop

BASIS=6-31G* ! that crashed from .coord

GUESS

SCF dftp=b3lyp ! --------------- recalculate energy and

FORCE ! gradient

NUMHESS fdstep=0.02 ! --------------- will automatically pick up data

GEOM noorient print=1 ! from .hesschk file

GUESS=READ

SCF dftp=b3lyp

FORCE

JUMP

GEOM print=1

FREQ

Parallel Quantum Solutions 155



Chapter 7
SQM

7.1 Introduction

SQM is an add-on module for the PQS program which scales force constants to produce a Scaled Quantum
Mechanical (SQM) Force Field. This can correct for deficiencies in the calculated (harmonic) force
constants, giving a better fit to experimentally observed vibrational fundamentals and infrared (IR)
intensities. The method has considerable predictive power and is often of great help in understanding
and assigning experimental vibrational spectra.

The first ab initio calculations of harmonic force constants were carried out at the Hartree-Fock level of
theory. Hartree-Fock theory overestimates harmonic force constants significantly and empirical scaling is
needed to produce force constants which can reproduce experimental vibrational frequencies. The scaling
compensates for basis set deficiencies, anharmonicity and mostly for the lack of electron correlation. The
need for empirical correction diminishes but is not completely eliminated if the quality of the wavefunction
improves by adding electron correlation and increasing the size of the basis.

The first scaling methods applied to ab initio force constants used several different scale factors to correct
for systematic errors in different types of molecular deformations, e.g., stretches, bends and torsions. This
procedure requires the transformation of the molecular force field (the Hessian matrix) to chemically
meaningful internal coordinates and cannot be applied directly to the calculated frequencies. It is thus
less convenient than global scaling using a single scaling factor. Global scaling can be applied directly to
the frequencies, the scale factor for frequencies being near 0.9, corresponding to a scale factor of 0.81 for
force constants. Because of its simplicity, global scaling became popular, but using multiple scale factors
yields much better results as was convincingly demonstrated by Blom and Altona in a series of papers
starting in the mid 1970s [93]. Their method forms the basis of the SQM procedure which has been in
widespread use for over 20 years [94].

In the original SQM procedure, the molecular geometry was expressed in terms of a full set of nonredun-
dant natural internal coordinates [81]. Natural internals use individual bond displacements as stretching
coordinates and localized linear combinations of bond angles and torsions as deformational coordinates.
(They are the precursors to the delocalized internal coordinates used in PQS, which are linear combi-
nations of all stretches, bends and torsions in the molecule [80].) On the basis of chemical intuition,
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Table 7.1: Recommended SQM scaling factor for standard organic molecules.

Scale Type Atomsa Value
stretch X-X 0.9207
stretch C-Cl 1.0438
stretch C-H 0.9164
stretch N-H 0.9242
stretch O-H 0.9527
bend X-X-X 1.0144
bend X-X-H 0.9431
bend H-C-H 0.9016
bend H-N-H 0.8753
torsion all 0.9523
linear bends all 0.8847

aX denotes a non-hydrogen atom(C, N or O).

the natural internal coordinates of all molecules under consideration are sorted into groups sharing a
common scaling factor, and factors for each group are determined by a least-squares fit to experimental
vibrational frequencies. Force constants, originally calculated in Cartesian coordinates, are transformed
into an internal coordinate representation, and scaling is applied to the elements of the internal force
constant matrix (not to the individual vibrational frequencies) according to

Fij(scaled) = (sisj)
1
2 Fij,

where si and sj are scaling factors for internal coordinates i and j, respectively.

The accuracy obtained by selective scaling in this way is naturally greater than if just a single overall
scaling factor were used. Additionally, scaling the force constant matrix also affects the resultant normal
modes, and hence the calculated intensities (which are unaffected if only the frequencies are scaled),
leading to better agreement with experimental intensities.

The SQM procedure has been widely used in the interpretation of vibrational spectra. A further important
role is the development of transferable scale factors which can be used to modify calculated force constants
and so predict the vibrational spectrum a priori.

The SQM module uses a modified scaling procedure involving the scaling of individual valence coordi-
nates [95] (not the linear combinations present in natural internal coordinates). This has immediate
advantages in terms of ease of use, as no natural internals need to be generated (a procedure which may
fail for complicated molecular topologies), and it simplifies the classification and presorting of the coordi-
nates. In addition, the extra flexibility involved in the scaling of individual primitive internals generally
leads to an increase in accuracy and to more transferable scale factors.

The user is encouraged to view the references provided, especially ref. 95.

Parallel Quantum Solutions 157



7.2 Program Capabilities

7.2 Program Capabilities

SQM capabilities include

1. Scaling a force constant matrix using a set of one or more precalculated scale factors. Eleven
optimized scale factors are available for standard organics containing H, C, N, O and Cl for force
constants calculated at B3LYP/6-31G*. This is one of the most cost-effective and reliable theoretical
methods currently available [95]. The recommended scale factors are listed in table 7.1.

2. Adjusting atomic masses to give normal modes, frequencies and intensities for isotopomers.

3. Optimizing scale factors to give the best least-squares fit to a set of experimental vibrational fre-
quencies.

4. Carrying out a total energy distribution analysis [96] to determine how much a given primitive
(stretch, bend or torsion) contributes to a particular normal mode.

5. Determining invariant diagonal force constants for all the stretches, bends and torsions in a molecule.

7.3 Installation

SQM is distributed in a separate package from the PQS program, and is available for Linux, Mac and
Windows systems. As with PQS, the location of the software is given by the PQS ROOT directory (see
chapter 2).

SQM is available as a RPM file (Linux only), as a tar archive (Linux and Mac), or in MSI format
(Windows only). Here follow detailed installation instructions for each version.

Installing from RPM

• Requires: Linux operating system, root privileges, rpm utility program

• Defaults: PQS ROOT=/usr/local/share/PQS,

1 Download the main SQM rpm package, say sqm-1.0-1.i386.rpm (change version identifier as needed).

2 As user root, type: rpm -ivh sqm-1.0-4.1386.rpm (substitute the appropriate file name for the rpm
package you have downloaded).
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Installing From Tar Archive

• Requires: Linux or Mac OS operating ssytem, root or administrator privileges, bash command shell,
Unix utilities (tar, gzip, sed, etc.)

• Defaults: PQS ROOT=/usr/local/share/PQS,

1 Download the SQM .tar.gz package, say sqm-1.0-1.i386.tar.gz (change version identifier as
needed).

2 Unpack the file:

tar -xvzf sqm-1.0-1.i386.tar.gz

(change version identifier as needed). This will create a directory named sqm-... (the name of the
tar file without the .tar.gz extension).

3 Enter the newly created directory:

cd sqm-...

You should have the following files:

README.PQS

install.sh

sqm-dist....tar.gz

4 Type: ./install.sh (sudo ./install.sh on a Mac). When prompted, enter the location of PQS ROOT.
Here you can accept the default value or enter one of your choosing. If you install SQM together
with PQS, you must use the same PQS ROOT value for both programs. You might need root or
administrator privileges, according to your chosen setup.

Installing from MSI

• Requires: Administrator privileges, Windows Installer

• Defaults: PQS ROOT="%PROGRAMFILES%\PQS\PQS 3.3" (usually "c:\Program Files\PQS\PQS 3.3")

1 Download the SQM.msi package.

2 Using an administrative account open Start->Control Panel->Add or Remove Programs.

3 Select the Add New Programs item in the task bar on the left side of the window.

4 Click on the CD or Floppy button.
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5 In the Install Program From Floppy Disk or CD-ROM dialog click on the Next button.

6 In the Run Installation Program dialog click on the Browse button, select the downloaded SQM.msi

file and press the Finish button to start the Windows Installer.

7 Read the End-User License Agreement and if you agree with its content, check the I accept the

terms in the License Agreement check box and press the Next button.

8 Choose an installation type by clicking on one of the three buttons Typical, Custom or Complete and
press the Install button to finish the installation.

Tip: Steps 2–6 above can be bypassed by opening the folder containing the SQM.msi
file on a Windows explorer, then double-clicking on the SQM.msi file.

Obtaining a License

In order to run SQM you need to obtain a license. For this you need first to generate the lockcode for
your machine. At a terminal window prompt, or in a DOS command window under Windows, type

sqm -lockcode

This will produce a file called pqs lockcode containing the lockcode for your host. If you have already
generated the lockcode file (for instance during the PQS installation) you do not need to repeat this
operation.

Once you have the pqs lockcode file, edit it with a text editor and fill in the contact information in the
header, then e-mail the file to licenses@pqs-chem.com. A license file will be e-mailed back to you. Save
the license file in the PQS ROOT directory. The license file must be named pqs lic.

After you have installed the license, you can test it by typing

sqm -check

7.4 Input File

A sample input file for formamide (HCONH2) with all keywords shown is given below:
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$molecules

formamide

$scaling

stre X X 1 0.9202 fixed

stre C H 2 0.9163 fixed

stre N H 3 0.9239

bend X X X 4 1.0108 fixed

bend X X H 5 0.9438 fixed

bend H N H 6 0.8765

tors H X X X 7 0.9525 fixed

tors H X X H 7 0.9525 fixed

$print_ted 3.0

$print_level 4

$max_atoms 10

$end

$molecules: file prefix names for .hess, .deriv, .evib files.

SQM needs molecular geometries, force constant (Hessian) matrices and dipole (and possibly quadrupole)
derivatives as input. The latter are available following a PQS frequency run in the files jobname.hess and
jobname.deriv – in this example these files are called formamide.hess and formamide.deriv. These
files must exist. SQM will still function if the .deriv file is missing, but no IR intensities will be available.

Various molecules can be grouped together (for example to determine the best scale factors for the whole
set). In this case all the file prefix names should be given, one per line with no blank lines, following the
$molecules keyword.

$scaling: scaling parameters. The fields are:

<scale type> <atom types> <scale group> <value> <action>

• <scale type>: can be one of stre, bend, rots, linc or linp, corresponding to stretches, planar
bends, proper torsions, and colinear and coplanar bend, respectively. Out-of-plane bends (outp)
are currently not accessible.

• <atom types>: up to four atomic symbols (X for any non-hydrogen atom) depending on the scale
type.

• <scale group>: scale factors with the same (integer) scale group number will be grouped together
during any optimization of the scale factors. The scale group number should start at 1 and must
be listed consecutively as shown in the example input.

• <value>: initial scale factor value.

• <action>: either fixed (for a fixed scale factor) or optimize. The default if this field is blank is
to optimize the scale factor.
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In the formamide example, there are seven scale factors, with the two different torsions in the molecule
grouped together. The scale factors for the N-H stretch and the H-N-H bend will be optimized to give
the best least-squares fit to a set of experimental frequencies, keeping all the other scale factors fixed at
their initial input values.

Note: When applying the scale factors, SQM takes each scale factor in turn in the
order they appear in the input file and scales any Hessian element that fits. Care must
be taken that scale factors involving the use of “X” – for a general non-hydrogen atom
– appear first in the list of each scale type (stre, bend, tors, linc, linp) as, if these
appear subsequent to a specific atom type (say a C-C stretch), then the specific atoms
will be taken as general non-hydrogen atoms and the wrong scale factor will be applied.
Note also that “X” cannot be used in place of a hydrogen atom. Thus if all torsions,
say, in a given molecule/set of molecules are to be scaled with the same scale factor,
then any torsions involving hydrogen must be specifically provided. Thus tors X X X X

alone will not scale any torsions involving hydrogen; you also need to specify both tors

H X X X and tors H X X H to scale these torsions.

The other input options are:

$print ted=<real>: print threshold for total energy distribution analysis. This analysis gives the
percentage contribution of each primitive stretch, bend and torsion in the molecule to each normal mode.
The default if no value is given is 5.0, i.e., only primitives which contribute 5% or more to a given normal
mode will be printed for that mode.

$print level=<integer>: controls the amount of printout (larger integer – more printout). In particular,
a value of 4 will print the normal modes. Values higher than 4 will progressively output more and more
intermediate quantities constructed during the SQM procedure and are essentially for debug printout.

$max atoms=<integer>: for allocating memory. Should be set to at least the number of atoms in the
largest molecule under consideration (the default is 50).

$end: terminates the input. It must be present.

7.5 The .evib File

The .evib file contains both the molecular geometry and, if scale factors are being optimized, the
experimental vibrational frequencies. The formamide.evib file is given below:

$coordinates angstrom

C 0.4121292508 0.0816374866 0.0000000000

O 0.4653658528 -1.1331720094 0.0000000000

H 1.3139166617 0.7266945306 0.0000000000
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N -0.7368390692 0.8133281236 0.0000000000

H -1.6267160783 0.3334309776 0.0000000000

H -0.7250294253 1.8221287816 0.0000000000

$frequencies J.Raman Spectros. 25 (1994) 183

0.0

608.

646.

841. 0.0d0

1090.

1309.

1391.

1602.

1692.

2882.

3190.

0.0

$end

The $coordinates section contains the geometry in Cartesian coordinates. The format is: atomic

symbol X Y Z atomic mass (A8,2X,4F20.14). This is essentially the same format as the PQS .coord

file except that the atomic charge is missing. Coordinates can be given either in Bohr or angstrom; the
units are specified following the $coordinates string as shown. If no units are specified, the default is
Bohr.

There are two ways of specifying isotopomers. The atomic mass can be given following the coordinates
(as per the above format) or the isotope can be specified as a part of the atomic symbol, e.g., H-2 will
use deuterium instead of hydrogen for that atom, C-13 will give carbon 13. If neither of these options is
specified, then the isotopically averaged atomic mass will be used.

The SQM program has built-in isotopically averaged atomic masses for all elements up to and including
Xenon (N=54). There are also up to four individual isotope masses for each of these elements (if an
element has more than four isotopes, then the four with the highest percentage abundance are avail-
able). The atomic masses for any atoms not included in the above description must be specified in the
$coordinates section.

The $frequencies section contains the experimental (or other) frequencies that will be used in the
least-squares fit. The format is <frequency> (in cm−1) <weight> with each frequency on a separate
line.

weight=<real>: gives the weight each vibrational frequency is given in the least-squares fit. Frequencies
that are not known accurately can be given a lower weight in the fitting; conversely frequencies that are
regarded as being reliable or for which a good agreement is particularly desired can be given a higher
weighting. The default if no weight is given is 1000 × the inverse experimental frequency (in cm−1).

If the experimental frequency for a particular vibration is very suspect, or if it is not known at all, it
should be given a zero weight. The number of fundamentals a molecule has is given — for a non-linear
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system it is 3N-6, where N is the number of atoms. Quite often there are less than 3N-6 vibrational
fundamentals that are reliably known. In this case, the $frequencies section should have one or more
lines containing zeroes (which correspond to an unknown frequency with a zero weight in the fit). It
may be necessary to vary the position of these zero lines in the input depending on the accuracy of the
fit; note also that although frequencies should generally be given in increasing order, it may be that two
fairly close values with different symmetries may need to be switched. This can often be easily detected
if one mode is strongly IR active whilst the other is only weakly active or IR inactive; the theoretical
mode with the large IR intensity should be fit to the experimentally IR active mode.

It is not so uncommon to find experimentally assigned bands that you simply cannot fit at all because
they have, in fact, been misassigned. The SQM procedure, when used correctly with a good theoretical
method (such as B3LYP/6-31G*), usually gives average errors in band positions of around 8 cm−1, and
maximum errors of the order of 20–30 cm−1. If you find maximum errors significantly outside this range,
there is a good chance that the experimental assignment is wrong.

$end: terminates the input. It must be present.

Note: In the formamide example, both the lowest and the highest frequency funda-
mentals are not known experimentally (hence the two zero lines) and the fundamental
assigned experimentally at 841 cm−1 is considered to be unreliable and has been given
zero weight in the fit. The source of the experimental data (J. Raman Spectros. 25
(1994) 183) has been given after the $frequencies keyword as a reminder to the user.

Invariant (“relaxed”) Force Constants

Force constants in internal coordinates can be obtained by a suitable transformation of the Cartesian
force constant matrix. Diagonal elements of the internal coordinate force constant matrix give individual
stretching, bending and torsional force constants. Unfortunately, the values of these internal coordinate
force constants depend on which primitive internals have been chosen to describe the molecular geometry.
For example, if a given stretch is present in two sets of internal coordinates (which contain different bends
and/or torsions), both sets of which can be used to describe a molecular geometry, then the stretching
force constant calculated using one set of coordinates will not have the same value in the other set. This
fact is perhaps not as widely known as it ought to be.

However, if the force constants are defined not as the diagonal elements of the Hessian matrix in internal
coordinates, but instead as the inverse of the diagonal elements of the inverse Hessian, then the two
stretching force constants in the example above will be the same. In this way force constants in internal
coordinates can be defined in an invariant way, independent of the precise choice of coordinates. The
inverse Hessian matrix is known as the compliance matrix.

Invariant force constants defined in this manner can be output from the SQM program by setting
$print level to 4.
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7.6 Program Usage

As with PQS, the best way to run SQM jobs is via the sqm (sqm.bat on Windows) wrapper script located
in the PQS ROOT directory. At a terminal window prompt, or in a Command Prompt window under
Windows, simply type

sqm jobname

where jobname is the name of the input file without the .inp extension. Output will be in jobname.out

and the files jobname.evib, jobname.hess and (optionally) jobname.deriv must exist.

The SQM program produces three temporary Fortran IO files: fort.37, fort.38 and fort.39. These
are currently not specifically named and so only one SQM job should be ran in a given directory at any
one time.
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Chapter 8
Frequently Asked Questions

1. I am unable to run PQS in parallel. When I try to start PVM, I get a cryptic message
“Cannot start pvmd” (the PVM daemon). What is the problem?

Assuming that the network is functioning, the most likely cause of this problem is that a previous
parallel calculation has been killed manually or because a computer was shut down or crashed (e.g.,
in a power outage). PVM keeps a file, pvmd.nnn where nnn is the user’s Unix number (usually
around 500 for ordinary users in Linux) in the /tmp directory. The presence of this file signals
that a PVM job is already running and prevents another PVM job starting. This file is normally
removed at the end of the job, except when the job or the machine dies. In the latter case, the file
need to be manually removed before it is possible to start the PVM daemon again.

Note: In PQS hardware systems like the QuantumCubeTM, you can enter the
command cluster -pvmreset to reset the PVM status for the current user. This
command will kill all the PVM daemons currently running on every node of the
cluster, and delete any leftover PVM temporary files. Be careful not to enter this
command if you have any job running, or it will be killed.

2. My small jobs are running OK but a large job keeps crashing, seemingly with lack of
memory, even though I have increased the memory allocation beyond what may be
conceivably needed. What should I do?

Check if the %MEM card is the very first card of the input deck. Due to the programming model
used, dynamic memory allocation must be the first statement executed.

3. My energy is going up in the early stages of SCF, becoming unreasonable. What is
the reason?

This is possible for heavier elements, in particular transition metals. The problem is the quality
of the initial guess, in particular the guess for the core orbitals. Start the calculation with a small
basis set (3-21G or even STO-3G) for a limited number of cycles, and use level shift. A value of
2-3 Eh is recommended but particularly difficult cases may require level shifts over 5 Eh. Run only
the preliminary calculation with high level shift, as large shifts slow down SCF convergence in the
final stages.

4. A calculation which ran perfectly well last week keeps crashing with a file read error.
Why?
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This is probably an optimization, force field, scan, or path job, or a dual-basis MP2 job. The
program stores information accumulated during the job in intermediate files, such as the .optchk

file. If the calculation is killed or crashes, these files remain behind and the program tries to use
the information on them. This may lead to format errors. Run tidy <jobname> before running
PQS.

5. I am unable to get a semiempirical guess. The semiempirical program does not con-
verge. What should I do?

Use a level shift. The syntax is the same as for SCF. LVSH=1 is often effective.

6. I am trying to get an open-shell singlet wavefunction (e.g., for ozone, O3 but the
wavefunction stubbornly gives the closed-shell solution. I have tried GUESS=UHFS
MIX but it does not help. Where is the error?

In this case, the UHFS wavefunction must break the spatial symmetry (C2v for O3). Keeping the
symmetry forces the system into the closed-shell state. Use SYMM=0.0 on the GEOM card.

7. My SCF calculation has converged but I forgot to do a population analysis and compute
nuclear properties. I have the converged .mos file, but when I read it in to repeat the
SCF it takes several cycles to converge. Why doesn’t it converge immediately?

The default in an SCF is to start the calculation with a loose integral threshold, then tighten the
threshold for the final convergence. The final orbitals which are saved on the .mos file are typically
converged with the tight threshold; if these are used with the loose threshold, they will need
additional (unnecessary) cycles to converge. When reading in converged orbitals from a previous
calculation, you should use the tight threshold from the start. Add the line INTE THRE=10,10

before the SCF card; this should result in immediate (2 cycle) convergence in the SCF step.
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option of PATH, 100
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option of %MEM, 29
option of MP2, 66
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example, 131
files used by, 152
options
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DISE, 74
EPSI, 72
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NPPA, 74
NSPA, 74
OFF, 74
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RADI, 72
ROUT, 74
RSOL, 72
SOLV, 72

predefined solvents, 73
CPU, 12, 32
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option of OPTImize, 88
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option of FFLD, 78
option of OPTImize, 86
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option of GEOM, 34
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option of SCF, 51
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option of OPTImize, 87
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option of SEMI, 76

DTOL
option of OPTImize, 87
option of PATH, 100

DUAL
option of MP2, 67

DUMMy
option of BASIs, 39
option of NMR, 64
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example, 115, 116
in geometry optimization, 93, 112
symbol, 33

DYNAmics, 13, 95–96
example, 123
files used by, 152
options

MAXCycle, 96
SEED, 96
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TEMPerature, 96

Pople style input, 102

ECP, 41
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CRENB, 44
def2, 45
example, 132
input format, 44
LANL, 43
Stuttgart-cologne, 44

EF algorithm, 85, 87
effective core potentials, see ECP
EFG

option of PROPerty, 71
eigenvector following algorithm, see EF algorithm
environment variables, 11, 15–24

in batch jobs, 150
EPSI

option of COSMo, 72
ETHR

option of SEMI, 76
ETOL

option of OPTImize, 87

FACTor
option of PROPerty, 71
option of SCF, 55

FDSTep
option of NUMHess, 59

FFLD, 13, 77–84
example, 119
files used by, 152
options

CUTOff, 78
FILE, 78
HESS, 78
PRINt, 78

FIELd
option of GEOM, 34
option of NUMPolar, 61

FILE
option of BASIs, 37
option of FFLD, 78
option of GEOM, 33
option of GUESs, 47
option of NUMHess, 59
option of OPTImize, 90

FILE, 12, 31–32
options

CHK, 31
SAVE, 32

SCR, 31
FLUOrine

option of NMR, 64
FOR

option of NMR, 63
FORCe, 5, 12, 58

files used by, 151
options

LIMIts, 58
PRINt, 58
THR1, 58
THR2, 58

Pople style input, 102
force field

Sybyl, 78
UFF, 80

FREQ, 13, 62
example, 109

Raman intensities, 121
options

PRESsure, 62
PRINt, 62
TEMPerature, 62

Pople style input, 102

GAUGe
option of NMR, 63

GDIIS
option of OPTImize, 87

GDIIs
Pople style input, 103

GEOM, 4, 12, 32–36
files used by, 150
options

AXES, 34
BOHR, 34
CHARge, 34
D2HS, 34
FIELd, 34
FILE, 33
GEOP, 34
MULTiplicity, 34
NOCM, 34
NOORient, 34
PRINt, 35
SYMM, 34

Pople style input, 102
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geometry, 32
format

CAR, 33
HIN, 33
MOL, 33
MOP, 33
PDB, 33
PQB, 33
PQS, 32
READ, 32
TX90, 32
ZMAT, 33

optimization, see OPTImize
Pople style input, 104

GEOP
option of GEOM, 34

ghost atom, 36
example, 122, 132

GRAD
option of MP2, 67

GRANularity
option of SCF, 55

graphical user interface, see PQSMol
GRID

option of HESS, 60
option of SCF, 54

GTOL
option of OPTImize, 87

GUESs, 4, 12, 46–50
example

MIX, 114
UHFS, 114

files used by, 151
options

ANGLe, 49
FILE, 47
MIX, 48
PRINt, 48
SWAB, 48
SWAP, 48
UHFS, 48

Pople style input, 103
guess type

AM1, 46
ATOM, 47
CORE, 47

HUCKEL, 47
MINDO, 46
MNDO, 46
PM3, 46
READ, 47
semiempirical, 46

GUI, see PQSMol

HCNVrt
option of OPTImize, 89

HESS
option of FFLD, 78
option of OPTImize, 87

HESS, 13, 59–60
example, 109
files used by, 151
options

GRID, 60
ITERations, 60
PRINt, 60
RESEt, 60
THR1, 59
THR2, 59
THREshold, 60

HYDRogen
option of NMR, 64

installation, 15–25
Linux, 16
Mac, 19
msi, 23
multi-user, 18, 21
rpm, 17
single-user, 18, 21
SQM, 158–160
tar archive, 18, 20
Windows, 23

INTE, 12, 50–51
options

LIMIts, 50
ONEL, 50
PRINt, 51
ROUTe, 50
STABle, 50
THREshold, 50

ITERations
option of HESS, 60
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option of NMR, 63
option of PATH, 100
option of SCF, 54
option of SEMI, 77

JUMP, 13, 29

LCAV
option of COSMo, 74

license
checking, 25
file, see pqs lic

Linux, 24
Mac, 24
SQM, 160
Windows, 25

LIMIts
option of FORCe, 58
option of INTE, 50
option of NMR, 63

LINEar
option of OPTImize, 88

LMAX
option of PROPerty, 71

LOCAlize
option of SCF, 55

lockcode file, see pqs lockcode

log file, 3, 7, 8
LVSHift

option of NMR, 63
option of SCF, 54
option of SEMI, 76

MAGNesium
option of NMR, 64

MALKin
option of NMR, 64

MAXCycle
option of DYNAmics, 96
Pople style input, 103

MAXDisk
option of MP2, 65
Pople style input, 103

MEMOry, see %MEM
method

Pople style input, 102
MINDO

semiempirical method, 76
MIX

option of GUESs, 48
MNDO

semiempirical method, 76
MODE

option of OPTImize, 87
molecular dynamics, see DYNAmics
MP2, 13, 65–68

example, 120, 127, 129, 132
dual basis, 125
SCS, 129

files used by, 151
options

CORE, 66
DUAL, 67
GRAD, 67
MAXDisk, 65
NOFRozen, 66
ORBS, 66
PMIJ, 67
PRINt, 67
RESTart, 67
SCS, 66
THREshold, 66

Pople style input, 102
msi installation, 23
multi-user installation, 18, 21
MULTiplicity

option of GEOM, 34
multiplicity, 34

Pople style input, 103

NBO, 13, 70
example, 114
files used by, 152

NEXT
option of BASIs, 38

NITRogen
option of NMR, 64

NMR, 5, 13, 62–64
example, 115, 116

level shift, 128
WAH, 128

files used by, 152
options

ALUMinum, 64
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BOROn, 64
CARBon, 64
CHLOrine, 64
DUMMy, 64
FLUOrine, 64
FOR, 63
GAUGe, 63
HYDRogen, 64
ITERations, 63
LIMIts, 63
LVSHift, 63
MAGNesium, 64
MALKin, 64
NITRogen, 64
NOCPhf, 63
OXYGen, 64
PHOSphorous, 64
PRINt, 63
SILIcon, 64
SODIum, 64
SULFur, 64
THR1, 63
THR2, 63
THREshold, 63
VCD, 64

Pople style input, 102
NOCM

option of GEOM, 34
NOCPhf

option of NMR, 63
NODD

option of SCF, 54
NOFRozen

option of MP2, 66
NOGUess

option of SEMI, 77
NOORient

option of GEOM, 34
NOTOrs

option of OPTImize, 89
NPPA

option of COSMo, 74
NSPA

option of COSMo, 74
NUMHess, 12, 58–59

example, 111, 116, 121

files used by, 151
options

FDSTep, 59
FILE, 59
PRINt, 59

restart, 154
NUMPolar, 13, 61–62

example, 121
files used by, 152
options

DIPD, 61
FIELd, 61
POLD, 61
PRINt, 61

OFF
option of COSMo, 74

ONEL
option of INTE, 50

ONIOM, 97
OPTCycle

option of OPTImize, 88
Pople style input, 103

OPTImize, 5, 13, 84–94
example

cluster, 117
constrained, 110, 112, 134
delocalized internals, 107
surface, 118
transition state, 111
z-matrix, 108

files used by, 152
options

BACK, 89
COORd, 85
CTOL, 88
CUTOff, 86
DMAX, 87
DTOL, 87
ETOL, 87
FILE, 90
GDIIS, 87
GTOL, 87
HCNVrt, 89
HESS, 87
LINEar, 88
MODE, 87
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NOTOrs, 89
OPTCycle, 88
PRINt, 89
PROJect, 88
QMMM, 89
REGEnerate, 86
SCAL, 89
STOL, 87
TRAN, 88
TYPE, 86
UPDAte, 88

Pople style input, 102
restart, 153

ORBS
option of MP2, 66

output file, 3
OXYGen

option of NMR, 64

PATH, 13, 99–100
example

Cartesian, 124
z-matrix, 125

files used by, 153
options

COORd, 100
DMAX, 100
DTOL, 100
ITERations, 100
PRINt, 100
SIGN, 100

PHOSphorous
option of NMR, 64

PHSR
option of COSMo, 75

PM3
semiempirical method, 76

PMIJ
option of MP2, 67

point charge, see dummy atom
POLAr, 60
POLD

option of NUMPolar, 61
POP, 13, 69–70

example, 133
files used by, 152
options

PTHRsh, 69
Pople style input, 103

Pople style input, 7, 101–104
charge, 103
CONV, 104
example, 120
geometry, 104
multiplicity, 103
preamble, 101
route, 102
title, 103

population analysis type
CHELp, 69
FULL, 69
LOWDin, 69
MULLiken, 69

pqs command, 10, 135–145
options
-check, 11, 25
-f, 140, 143
-lockcode, 11, 24
-mpi1, 143
-mpi2, 145

pqs.bat, see pqs command
PQS BASDIR, 11

in batch jobs, 150
pqs lic file, 11, 24
pqs lockcode file, 11, 24
PQS ROOT, 11, 15

in batch jobs, 150
PQS SCRDIR, 11, 15

in batch jobs, 150
pqs sge command, 146–147

options
-mpi1, 146
-mpi2, 146
-pvm, 146

pqs tidy command, see tidy command
PQSMol, 1, 135
preamble

Pople style input, 101
PRESsure

option of FREQ, 62
PRINt

option of BASIs, 40
option of FFLD, 78
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option of FORCe, 58
option of FREQ, 62
option of GEOM, 35
option of GUESs, 48
option of HESS, 60
option of INTE, 51
option of MP2, 67
option of NMR, 63
option of NUMHess, 59
option of NUMPolar, 61
option of OPTImize, 89
option of PATH, 100
option of PROPerty, 71
option of QMMM, 97
option of SCF, 55
option of SEMI, 77

print flag, see PRINt
Pople style input, 102

PROJect
option of OPTImize, 88

PROPerty, 13, 71
example, 122
options

EFG, 71
FACTor, 71
LMAX, 71
PRINt, 71
RADF, 71
SPIN, 71

PSEUdo
option of SCF, 54

pseudopotentials, see ECP
PSP, see ECP
PTHRsh

option of POP, 69
PWAVe

option of SCF, 56

QM/MM, see QMMM
QMMM

option of OPTImize, 89
QMMM, 13, 96–97

example, 126
files used by, 152
options

PRINt, 97

RADF
option of PROPerty, 71

RADI
option of COSMo, 72

REGEnerate
option of OPTImize, 86

RESEt
option of HESS, 60

RESTart
option of MP2, 67

restart
NUMHess, 154
OPTImize, 153

RHF, 51
root directory, see PQS ROOT
ROUT

option of COSMo, 74
ROUTe

option of INTE, 50
route

Pople style input, 102
rpm installation, 17
RSOL

option of COSMo, 72

SAVE
option of FILE, 32

SCAL
option of OPTImize, 89

SCAN, 13, 98–99
example

optimized, 124
z-matrix, 123

files used by, 153
SCF, 5, 12, 51–57

example
PWAVe, 130
semi-direct, 113, 130

files used by, 151
options

ANNEal, 55
DFTP, 51
DIIS, 54
FACTor, 55
GRANularity, 55
GRID, 54
ITERations, 54
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LOCAlize, 55
LVSHift, 54
NODD, 54
PRINt, 55
PSEUdo, 54
PWAVe, 56
SEMI, 55
STHReshold, 54
THREshold, 54
VIRT, 55

Pople style input, 103
SCFCycle

Pople style input, 103
SCR

option of FILE, 31
scratch directory, see PQS SCRDIR
script

archive, see archive command
pqs.bat, see pqs command
pqs sge, see pqs sge command
pqs tidy, see tidy command
pqs, see pqs command
sqm.bat, see sqm command
sqm, see sqm command
tidy.bat, see tidy command
tidy, see tidy command

SCS
option of MP2, 66

SEED
option of DYNAmics, 96

SEMI
option of SCF, 55

SEMI, 13, 75–77
files used by, 152
options

DIIS, 77
DTHR, 76
ETHR, 76
ITERations, 77
LVSHift, 76
NOGUess, 77
PRINt, 77

semi-direct SCF, 29, 55, 113, 130
semiempirical method

AM1, 76
MINDO, 76

MNDO, 76
PM3, 76

SGE batch environment, 146
SIGN

option of PATH, 100
SILIcon

option of NMR, 64
single-user installation, 18, 21
SODIum

option of NMR, 64
SOLV

option of COSMo, 72
SP

Pople style input, 102
SPIN

option of PROPerty, 71
SQM, 156–165

.evib file
$coordinates, 163
$end, 164
$frequencies, 163

input file
$end, 162
$max atoms, 162
$molecules, 161
$print level, 162
$print ted, 162
$scaling, 161

installation
msi, 159
rpm, 158
tar, 159

license, 160
scaling factors, 157
usage, 165

sqm command, 165
sqm.bat, see sqm command
STABle

option of INTE, 50
STEP

option of DYNAmics, 96
Pople style input, 103

STHReshold
option of SCF, 54

STOL
option of OPTImize, 87
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STOP, 13, 29
SULFur

option of NMR, 64
summary file, see log file
Sun grid engine, see SGE
surface coordinates, 85, 86, 118
SWAB

option of GUESs, 48
SWAP

option of GUESs, 48
Sybyl force field, 78–80
SYMM

option of GEOM, 34
Pople style input, 103

tar archive installation, 18, 20
TEMPerature

option of DYNAmics, 96
option of FREQ, 62
Pople style input, 103

TEXT, 13, 28
THR1

option of FORCe, 58
option of HESS, 59
option of NMR, 63

THR2
option of FORCe, 58
option of HESS, 59
option of NMR, 63

THREshold
option of HESS, 60
option of INTE, 50
option of MP2, 66
option of NMR, 63
option of SCF, 54

tidy command, 11, 136
TITLe, 4, 12, 28
title, 28

Pople style input, 103
TRAN

option of OPTImize, 88
transition state search, 86, 111
TS

Pople style input, 103
TYPE

option of OPTImize, 86

UHF, 51
singlet, see UHFS

UHFS
option of GUESs, 48

universal force field, 80–84
UPDAte

option of OPTImize, 88

VCD, 64–65
example, 133
option of NMR, 64

VIRT
option of SCF, 55

VSHIft
Pople style input, 103

z-matrix, see geometry, format, ZMAT
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